Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a configuration for a cell from a base station. In some examples, the cell may be deactivated and the base station may configure the cell with one or more base station beams. The UE may receive beam management resources for performing beam management based on the configured base station beams. In some examples, the beam management resources include resources for transmitting or receiving one or more reports indicating a quality of the configured base station beams. The UE may then perform the beam management, while the cell is deactivated, to track one or more UE beams corresponding to the configured base station beams.
Abstract:
Methods and apparatuses of wireless communications are provided to dynamically determine capability information such that potential configuration and/or resource conflicts may be mitigated among multiple connections while one or more of on-going connections are not interrupted. A user equipment (UE) establishes one or more connections with a network. The UE allocates, in a first resource allocation, one or more resources of the UE to the one or more connections. The UE dynamically determines an instantaneous UE capability information (IUCI) of the UE in response to a change from the first resource allocation to a second resource allocation, the IUCI indicative of the capability of the UE during a predetermined time period. The UE transmits the IUCI to the network to mitigate potential resource allocation conflict among the one or more connections while maintaining at least one of the connections.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive a measurement configuration on a first cell specifying a measurement gap for measuring cells on other frequencies. The UE may then measure a second cell and determine an offset between the timing of the two cells. If the measured frequency band is synchronized (or nearly synchronized), the length of the measurement gap may be reduced. In some cases, the UE may then make measurements on the second cell using a reduced measurement interval, and the UE may power down certain components during the rest of the measurement gap to conserve power. In other cases, the UE may coordinate with the serving cell to reduce the measurement gap to minimize the interruption caused by the gaps.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for configuration of channel bandwidth that may be specific to a particular user equipment (UE). A UE may be configured with a channel bandwidth that is less than or equal to a channel bandwidth of the serving base station, and may also be different than a channel bandwidth of one or more other UEs that are served by the base station. The base station may signal the UE-specific channel bandwidth in UE-specific signaling, such as UE-specific radio resource control (RRC) signaling.
Abstract:
A beam selection method and apparatus suitable for millimeter wave (mmW) communication systems is disclosed. In one aspect, a user equipment (UE) may perform a beam sweep procedure to identify suitable downlink beams candidates from one or more gNBs. The UE may generate a beam list by selecting some of the downlink beams for active tracking. When beams on the beam list become unavailable, the UE may compare the number of available beams on the beam list with a threshold value. If the number of available beams falls below the threshold, the UE may perform another beam sweep procedure.
Abstract:
Methods, systems, and devices for wireless communications are described. In some wireless communications systems, wireless devices (e.g., user equipment (UEs) and base stations) may communicate using beamformed transmissions. If a wireless device receives a transmission over multiple receive beams, the device may utilize signal measurements over the beams to determine a signal direction, a type of noise associated with the transmission, or both. The device may determine a signal direction based on received signal strength measurements over at least two receive beams and may select a beam for communication based on the determined signal direction. Additionally or alternatively, the device may compare noise measurements for the signal over at least two receive beams and may determine whether the noise corresponds to interference or white noise. The device may detect the direction of an interferer and may modify reception or demodulation based on the type of noise detected.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may mitigate self-interference and intermodulation products caused by communicating over two carriers in order to improve measurements of a third carrier. The UE may determine a measurement configuration to determine the quality of the third carrier. The measurement configuration may include identifying time periods with no scheduled uplink transmissions, time periods with a transmit power below a power threshold, time periods with frequency locations with an expected lower intermodulation interference, or time periods with a scheduled reference signal transmission (e.g., a synchronization signal (SS) block). The UE may also reduce a transmit power for a time period or drop a scheduled uplink transmission in order to perform more accurate measurements on the third carrier. In some cases, a base station may schedule a measurement gap for the UE to perform the measurements.
Abstract:
Techniques are provided for assigning aggregated component carriers. For example, a method may include receiving from a user equipment (UE) a set of rules associated with timing advance groups (TAGs) comprising allowable combinations of frequency bands. The method may include determining frequencies of aggregated component carriers. The method may include assigning the aggregated component carriers to at least one timing advance group based on the allowable combinations of frequency bands and the determined frequencies of the aggregated component carriers.
Abstract:
Power headroom management in uplink carrier aggregation for connectivity with logically separate cells of a wireless communications system is performed by a network entity, alone or in combination with another network entity, one or more mobile entities, or both. This may include determining an uplink power allocation across at least two independently controlled cells of a wireless communication network for a mobile entity served by at least two independently controlled cells of a wireless communication network, subject to a total PH constraint for uplink transmissions by the mobile entity. A network entity may then manage PH reporting for determining the uplink power allocation by the uplink serving cells, based on the determined uplink power allocation. Managing the PH reporting may be performed by at least one of: explicit coordination between the at least two independently controlled cells, implicit coordination between the at least two independently controlled cells, or configuring PH reporting from the mobile entity by at least one of the at least two independently controlled cells.
Abstract:
Techniques are provided for assigning aggregated component carriers. For example, a method may include receiving from a user equipment (UE) a set of rules associated with timing advance groups (TAGs) comprising allowable combinations of frequency bands. The method may include determining frequencies of aggregated component carriers. The method may include assigning the aggregated component carriers to at least one timing advance group based on the allowable combinations of frequency bands and the determined frequencies of the aggregated component carriers.