摘要:
An apparatus for a thermal actuator for a micromechanical device, especially a liquid drop emitter such as an ink jet printhead, is disclosed. The disclosed thermal actuator comprises a base element and a cantilevered element including a thermo-mechanical bending portion extending from the base element and a free end portion residing in a first position. The thermo-mechanical bending portion has a base end width, wb, adjacent the base element and a free end width, wf, adjacent the free end portion wherein the base end width is substantially greater than the free end width. The thermal actuator further comprises apparatus adapted to apply a heat pulse directly to the thermo-mechanical bending portion causing the deflection of the free end portion of the cantilevered element to a second position. The width of the thermo-mechanical bending portion may reduce substantially monotonically as a function of the distance away from the base element or in at least one step reduction. The apparatus adapted to apply a heat pulse may comprise a thin film resistor. Alternatively, the thermo-mechanical bending portion may comprise a layer of electrically resistive material having a heater resistor formed therein to which is applied an electrical pulse to cause rapid deflection of the free end portion and ejection of a liquid drop.
摘要:
An apparatus for a thermal actuator for a micromechanical device, especially a liquid drop emitter such as an ink jet printhead, is disclosed. The disclosed thermal actuator comprises a base element and a cantilevered element including a thermo-mechanical bending portion extending from the base element and a free end portion residing in a first position. The thermo-mechanical bending portion has a base end width, wb, adjacent the base element and a free end width, wf, adjacent the free end portion wherein the base end width is substantially greater than the free end width. The thermal actuator further comprises apparatus adapted to apply a heat pulse directly to the thermo-mechanical bending portion causing the deflection of the free end portion of the cantilevered element to a second position. The width of the thermo-mechanical bending portion may reduce substantially quadratically or in an inverse power fashion as a function of the distance away from the base element or in at least one step reduction. The apparatus adapted to apply a heat pulse may comprise a thin film resistor. Alternatively, the thermo-mechanical bending portion may comprise a layer of electrically resistive material having a heater resistor formed therein to which is applied an electrical pulse to cause rapid deflection of the free end portion and ejection of a liquid drop.
摘要:
An apparatus for and method of operating a thermal actuator for a micromechanical device, especially a liquid drop emitter such as an ink jet printhead, is disclosed. The disclosed thermal actuator comprises a base element and a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip. The thermo-mechanical bender portion includes a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers. The thermo-mechanical bender portion further has a base end adjacent the base element and a free end adjacent the free end tip. A first heater resistor is formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, &Dgr;T1b, that is greater than a first deflector layer free end temperature increase, &Dgr;T1f. A second heater resistor is formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, &Dgr;T2b that is greater than a second deflector layer free end temperature increase, &Dgr;T2f. Application of an electrical pulse to either the first or second heater resistors causes deflection of the cantilevered element, followed by restoration of the cantilevered element to an initial position as heat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature. For liquid drop emitter embodiments, the thermal actuator resides in a liquid-filled chamber that includes a nozzle for ejecting liquid. Application of electrical pulses to the heater resistors is used to adjust the characteristics of liquid drop emission. The barrier layer exhibits a heat transfer time constant &tgr;B. The thermal actuator is activated by a heat pulses of duration &tgr;p wherein &tgr;p
摘要:
An apparatus for controlling errant ink drops in an inkjet printer having a plurality of nozzles for ejecting ink drops along a droplet trajectory and printing the ejected ink drops onto a receiver, including: at least one airflow channel arranged to provide a non-uniform airflow pattern located along a portion of the droplet trajectory, wherein the apparatus is in close proximity to the plurality of nozzles and prior to the receiver, such that the non-uniform airflow pattern provides compensation for errors in the printing of the ejected ink drops on the receiver and means for moving air in the airflow channel.
摘要:
An ink jet print head is formed of a silicon substrate that includes integrated circuits formed therein for controlling operation of the print head. The silicon substrate has a series of ink channels formed therein along the length of the substrate. An insulating layer or layers overlying the silicon substrate has a series of nozzle openings or bores formed therein along the length of the substrate and each nozzle bore communicates with a respective ink channel. A primary heater element is associated with each nozzle bore for asymmetrically heating the ink in the nozzle bore. A secondary heater element is provided upstream of the primary heater element and formed in the insulating layer to preheat ink just prior to entry of the ink into the nozzle bores.
摘要:
A continuous ink jet printing system using asymmetrical heating of the fluid in which the nozzle bore (46, 76, 78) of the printhead preferably has a non-circular opening. The nozzle bore (46, 76, 78) has reflection symmetry about the long axis of its cross-section and may be, for example, elliptical or rectangular. In the preferred embodiment of the invention, the nozzle bore (46, 76, 78) has an aspect ratio greater than unity, wherein the aspect ratio is defined as the ratio of the long axis length to the short axis length. A heater (50, 50′, 50″) used to generate deflection of the fluid exiting the nozzle bore (46, 76, 78) generally conforms to the perimeter of the nozzle bore (46, 76, 78) such that the heated portion is along the long dimension of the nozzle bore (46, 76, 78).