Abstract:
The present disclosure provides a printhead assembly comprising: a plurality of printhead modules (100a), including a first printhead module, a second printhead module and a third printhead module. Each of the plurality of printhead modules (100a) comprises: a plurality of printhead nozzles (126) each provided with an actuator (118) for selectively ejecting print agent therefrom; at least one print agent manifold (122, 124) providing a fluid communication pathway between at least one print agent inlet and the plurality of printhead nozzles (126); and control circuitry (104) to control the actuators (118) of the printhead module (100a) to eject print agent from the printhead nozzles (126). The first printhead module is mounted to the third printhead module via the second printhead module.
Abstract:
A perforate element for use in a print head for non-contact liquid printing comprises: at least one ejection element including an outlet, configured to eject a bulk flow of printing liquid out of the print head; and a liquid residence element, arranged to provide a layer of liquid over the outlet which extends laterally of the outlet and through which the bulk flow is ejected.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting head that ejects a liquid supplied from a liquid supplier which has an engaging portion, a container that has an engaging-portion-receiving portion with which the engaging portion engages, and an attaching portion to which the container is detachably attached. The liquid supplier is detachably attached to the attaching portion with movement of the container in a state where the engaging portion has engaged with the engaging-portion-receiving portion. The engaging portion engages with the engaging-portion-receiving portion to be relatively movable in a direction which crosses a movement path of the container when the container is attached to the attaching portion.
Abstract:
An inkjet printhead including: an elongate fluid manifold comprising: an inlet boss, an outlet boss, a longitudinal channel extending between the inlet and outlet bosses, a plurality of air cavities positioned above the longitudinal channel in a roof cavity of the fluid manifold, and plurality of fluid outlets defined in a floor of the longitudinal channel; and a plurality of printhead chips attached to the base of the fluid manifold, each printhead chip receiving printing fluid from one or more fluid outlets. The air cavities are defined by ribs extending from a roof of the fluid manifold towards the longitudinal channel and each rib has a lip protruding beyond a lower surface of the inlet and outlet bosses.
Abstract:
A printhead substrate, comprising an electrothermal transducer configured to heat a printing material, a first DMOS transistor configured to drive the electrothermal transducer, a MOS structure forming an anti-fuse element, a second DMOS transistor configured to write information in the anti-fuse element by causing an insulation breakdown of an insulating film of the MOS structure, and a driving unit consisted of at least one MOS transistor and configured to drive the second DMOS transistor.
Abstract:
A liquid ejection head includes a plurality of recording element substrates that each include an energy generating element generating energy utilized for ejecting a liquid and that each have a supply port through which the liquid is supplied to the energy generating element, a plurality of support members that each have a flow passage communicating with a corresponding one of the supply ports and that each support a corresponding one of the plurality of recording element substrates, a base substrate that supports the plurality of support members, and a heat insulating member disposed between the flow passages and the base substrate. In the liquid ejection head, a thermal conductivity of the support members is equal to or greater than a thermal conductivity of the recording element substrates, and a thermal conductivity of the heat insulating member is less than a thermal conductivity of the base substrate.
Abstract:
An inkjet printer including a printhead with a fluid ejection chip and an associated method of forming is described. The fluid ejection chip includes a substrate, a plurality of groups of drive elements formed on the substrate, and a plurality of fluid ejection devices disposed on the substrate. Each group of drive elements includes at least two drive elements electrically coupled in parallel. Each fluid ejection device of the plurality of fluid ejection devices is electrically coupled with a respective group of the plurality of groups of drive elements so that the plurality of drive elements selectively activate the plurality of fluid ejection devices for causing fluid to be expelled from the printhead in accordance with image data.
Abstract:
Fluid ejection devices with particle tolerant thin-film extensions are disclosed. An example apparatus includes a printer; a reservoir; and a printhead including: a firing chamber; a channel to receive fluid from the reservoir, the channel is coupled to the firing chamber, the channel having an opening; and a particle-tolerant film disposed adjacent the opening of the channel, the particle-tolerant film disposed between the channel and the reservoir, the particle-tolerant film to deter particles within the fluid from settling in an area adjacent the opening.
Abstract:
A printhead including one or more fluid vias in fluid communication with a fluid supply, each of the one or more fluid vias being associated with a first number of heating elements, the heating elements being divided into groups of a second number of heating elements so as to form a number of primitive groups, and an electrical interface having at least one shift register that receives primitive address data to allow for selective application of electrical signals to the heating elements so that fluid is ejected from the printhead in accordance with image data, the number of primitive groups being dependent on the print resolution of the printhead so that a number of bits required for the at least one shift register to address each heater is independent of the print resolution of the printhead.
Abstract:
A portable handheld device includes an image sensor for capturing an image; and a one-chip microcontroller having integrated therein a CPU for processing a script language and a multi-core processor for processing an image captured by the image sensor. The multi-core processor includes therein multiple processing units connected in parallel by a crossbar switch. Each processing unit includes an arithmetic and logic unit (ALU). Each ALU includes a first register set for accepting data from the first crossbar switch, and a second register set for loading data to the crossbar switch.