Abstract:
The present invention is a catheter actuation handle for deflecting a distal end of a tubular catheter body, the handle including an auto-locking mechanism. The handle comprises upper and lower grip portions, an actuator, and an auto-locking mechanism. The auto-locking mechanism is adapted to hold a deflected distal end of the catheter in place without input from the operator. When the distal end of the catheter is deflected from its zero position, it typically will seek a return to its zero position, and as a result exerts a force on the actuator. The auto-locking mechanism acts by providing a second force that resists this force from the distal end and holds the distal end in place. As a result, the operator does not need to maintain contact with the buttons to maintain the distal end 18 in a set position once placed there by actuating the actuator.
Abstract:
A hemostasis valve has a housing having proximal and distal ends defining proximal and distal openings configured for passage of a medical device therethrough. The housing further defines a cavity between the proximal and distal ends. One or more rollers are received within the cavity and define end sections and a central section having a smaller diameter than the end sections. Sleeves are disposed about the rollers and are elastically deformable to form a fluid seal around the device. The sleeves each assume a first form when the device is absent from the cavity wherein a radially inner surface of the sleeve is located at a first distance from the central section of a roller and a second form when the device is present in the cavity wherein the surface is located at a second distance, less than the first distance, from the central section of the roller.
Abstract:
Catheter shaft handles and deflection actuators are disclosed. The actuators include at least one pull wire guide wall and a means for anchoring the proximal portion of a pull wire or of a fiber attached to a pull wire. Each actuator is pivotable relative to the catheter handle housing, and may comprise at least one boss for pivoting the actuator relative to the catheter handle housing. The actuators transfer rotational motion based upon user input on a boss into longitudinal motion of a pull wire. The actuators may include a tensioning mechanism comprising a tension adjustment pin and a pin block, wherein the tension adjustment pin is rotatably attached to the pin block to enable adjustment of tension in a pull wire (e.g., during assembly of the catheter handle).
Abstract:
A magnetically-guided catheter includes a tip positioning magnet in the distal electrode assembly configured to interact with externally applied magnetic fields for magnetically-guided movement. A magnetically-guided mapping catheter includes an electrically-conductive capsule in the form of a casing that includes a distal ablation surface and isolates the positioning magnet from bio-fluids to prevent corrosion. An open irrigation ablation catheter includes an isolated manifold that isolates the positioning magnet from contact with irrigation fluid to prevent corrosion.
Abstract:
A hemostasis valve has a housing having proximal and distal ends defining proximal and distal openings configured for passage of a medical device therethrough. The housing further defines a cavity between the proximal and distal ends. One or more rollers are received within the cavity and define end sections and a central section having a smaller diameter than the end sections. Sleeves are disposed about the rollers and are elastically deformable to form a fluid seal around the device. The sleeves each assume a first form when the device is absent from the cavity wherein a radially inner surface of the sleeve is located at a first distance from the central section of a roller and a second form when the device is present in the cavity wherein the surface is located at a second distance, less than the first distance, from the central section of the roller.
Abstract:
A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.