Abstract:
A liquid crystal display according to m exemplary embodiment of the present invention includes: a first substrate; a gate line formed on the first substrate; an insulating layer formed on the gate line; and a first subpixel electrode and a second subpixel electrode that are formed on the insulating layer. Each of the first subpixel electrode and the second, subpixel electrode includes a first subregion and a second subregion. At least one of the first subregion and the second subregion Includes a vertical stem, a horizontal stem extending from a middle of the vertical stem, and a plurality of minute branches laterally extending in a diagonal direction from the horizontal stem. The plurality of minute branches laterally extending from the horizontal stem are alternately branched with reference to the horizontal stem.
Abstract:
A liquid crystal display (LCD) according to an exemplary embodiment of the present invention includes: a first insulation substrate; a lower electrode disposed on the first insulation substrate; a second insulation substrate facing the first insulation substrate; an upper electrode disposed on the second insulation substrate and facing the lower electrode; and a liquid crystal layer disposed between the lower electrode and the upper electrode. The lower electrode forms one unit region, the unit region includes a plurality of subregions, and the lower electrode includes: a first lower electrode including a central pattern disposed at a center of a border between each pair of adjacent subregions, and a plurality of micro branch portions that are coupled to the central pattern, the micro branch portions of two different subregions extending in different directions; and a second lower electrode having intersecting elongated portions that each extend along parts of the border.
Abstract:
A liquid crystal display includes: a flexible first substrate; a pixel electrode positioned on the first substrate and including an outer stem with a quadrangular shape, a crossed-shape stem including a transverse stem positioned inside the outer stem and a longitudinal stem crossing the transverse stem, and a plurality of minute branches extending from the outer stem and the crossed-shape stem; a flexible second substrate facing the first substrate; a common electrode positioned on the second substrate; and a liquid crystal layer including liquid crystal molecules interposed between the first substrate and the second substrate. An angle formed by minute branches of one sub-region of the pixel electrode positioned at second, third and fourth zones and the transverse stem is smaller than an angle formed by minute branches of three other sub-regions of the pixel electrode positioned at the second, third, and fourth zones and the transverse stem.
Abstract:
A liquid crystal display includes a lower panel electrode including a lower panel unit electrode, an upper panel electrode including an upper panel unit electrode facing the lower panel unit electrode, and a liquid crystal layer between the lower panel electrode and the upper panel electrode and including liquid crystal molecules, where the lower panel unit electrode includes a center electrode disposed at a center thereof, minute branches which extends from an edge side of the center electrode to an outside, and a first cutout is defined in the center of the center electrode, and the a second cutout is defined in the upper panel unit electrode between the minute branches and the first cutout, and a third cutout is connected to the second cutout and defines a boundary between subregions together with the first cutout.
Abstract:
A liquid crystal display includes a first substrate, a pixel electrode which is disposed on the first substrate and includes a first subpixel electrode which is disposed at a pixel area and includes a plurality of first branch electrodes, and a second subpixel electrode which is separated from the first subpixel electrode, disposed at an outer edge of the pixel area, encloses the first subpixel electrode and includes a plurality of second branch electrodes, a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, where a first voltage applied to the first subpixel electrode is larger than a second voltage applied to the second subpixel electrode.
Abstract:
A liquid crystal display includes: a first electrode and a second electrode disposed on a first substrate, the first electrode and the second electrode being disposed at a same layer; a second substrate facing the first substrate; a third electrode and a fourth electrode disposed on the second substrate and disposed at different layers; and a liquid crystal layer including liquid crystal molecules disposed between the first substrate and the second substrate, wherein the first electrode, the second electrode, and the third electrode each include a plurality of branch electrodes, but the fourth electrode does not; and wherein the first electrode is electrically connected to the third electrode.
Abstract:
A liquid crystal display includes a first substrate, a second substrate disposed opposite to the first substrate; a pixel electrode disposed on the first substrate; a common electrode disposed on the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate, where a first cutout having a cross shape is defined in the common electrode, a second cutout is defined in the pixel electrode to be adjacent to and along an edge of the pixel electrode, and the pixel electrode has a step structure, a boundary line of which is in a rhombus shape.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes: a first substrate; a first subpixel electrode positioned on the first substrate and configured to receive a first voltage; a second subpixel electrode positioned on the first substrate and configured to receive a second voltage; an insulating layer positioned between the first subpixel electrode and the second subpixel electrode; a second substrate facing the first substrate; and a common electrode positioned on the second substrate. A portion of the first subpixel electrode and a portion of the second subpixel electrode overlap each other with the insulating layer interposed therebetween, and a difference between the first voltage and a common voltage is larger than a difference between the second voltage and the common voltage.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present inventive concept includes: a plurality of pixels including a plurality of pixel electrodes formed on a first substrate and including first domain division means, and a common electrode formed on a second substrate that faces the first substrate and including second domain division means; a gate driver and a data driver connected to the plurality of pixels; and a compensation controller connected to the data driver, the compensation controller transmits compensation voltages to the data driver, wherein, when viewed on the same plane, distances between the first domain division means and the second domain division means are changed according to a location of the plurality of pixels, and wherein the compensation voltages are changed corresponding to the distances between the first domain division means and the second domain division means.
Abstract:
A liquid crystal display includes a display panel, an opposite display panel, a liquid crystal layer between the display panel and the opposite display panel. The display panel includes a first base substrate, a pretilt alignment stabilization layer including a polymer of a reactive mesogen, a first vertical alignment layer including a decomposition product of a polymerization initiator between the first base substrate and the pretilt alignment stabilization layer, and a pattern electrode between the first base substrate and the first vertical alignment layer. The opposite display panel includes a second base substrate, a patternless electrode on the second base substrate, and a second vertical alignment layer on the patternless electrode, which includes the decomposition product of the polymerization initiator. The liquid crystal layer includes a liquid crystal composition having negative dielectric anisotropy. A surface of the LCD that faces a viewer has a concave shaped curve.