Abstract:
A display device includes: a substrate including a pixel area; and a pixel in the pixel area, the pixel including a first sub-light emitting area, a second sub-light emitting area, and a peripheral area surrounding the first and second sub-light emitting areas. The pixel may include: a first electrode, a second electrode, a third electrode, and a fourth electrode that are spaced from each other; a plurality of light emitting elements in the first and second sub-light emitting areas; a bank in the peripheral area and including a first opening corresponding to the first sub-light emitting area and a second opening corresponding to the second sub-light emitting area; and an intermediate bank between the first sub-light emitting area and the second sub-light emitting area and partially overlapping the second and third electrodes in a plan view.
Abstract:
A display device includes a plurality of pixels, a first bank defining light emission regions of the plurality of pixels, a first electrode and a second electrode which are spaced apart from each other in each of the light emission regions, and a plurality of light emitting elements disposed between the first electrode and the second electrode. The first bank, the first electrode, and the second electrode include a same material.
Abstract:
A display device includes: a substrate including a pixel area; and a pixel in the pixel area, the pixel including a first sub-light emitting area, a second sub-light emitting area, and a peripheral area surrounding the first and second sub-light emitting areas. The pixel may include: a first electrode, a second electrode, a third electrode, and a fourth electrode that are spaced from each other; a plurality of light emitting elements in the first and second sub-light emitting areas; a bank in the peripheral area and including a first opening corresponding to the first sub-light emitting area and a second opening corresponding to the second sub-light emitting area; and an intermediate bank between the first sub-light emitting area and the second sub-light emitting area and partially overlapping the second and third electrodes in a plan view.
Abstract:
A curved liquid crystal display is provided. The curved liquid crystal display includes: a first curved substrate; a second curved substrate; a liquid crystal layer including liquid crystal molecules having negative dielectric anisotropy, the liquid crystal layer being interposed between the first and second curved substrates; a first curved liquid crystal alignment layer interposed between the liquid crystal layer and the first curved substrate; and a second curved liquid crystal alignment layer interposed between the liquid crystal layer and the second curved substrate. The first curved liquid crystal alignment layer includes protrusions protruded toward the second curved liquid crystal alignment layer. The second curved liquid crystal alignment layer includes protrusions protruded toward the first curved liquid crystal alignment layer. An average number of the protrusions on the second curved liquid crystal alignment layer is greater than an average number of protrusions on the first curved liquid crystal alignment layer.
Abstract:
A liquid crystal composition includes the following compounds: (in a range of 21.5 to 26.5 parts by weight) a compound represented by a first chemical formula, (in a range of 2.5 to 7.5 parts by weight) a compound represented by a second chemical formula, (in a range of 12.5 to 17.5 parts by weight) a compound represented by a third chemical formula, (in a range of 5.5 to 10.5 parts by weight) a compound represented by a fourth chemical formula, (in a range of 7.5 to 12.5 parts by weight) a compound represented by a fifth chemical formula, (in a range of 2 to 7 parts by weight) a compound represented by a sixth chemical formula, (in a range of 10.5 to 15.5 parts by weight) a compound represented by a seventh chemical formula, and (in a range of 13 to 18 parts by weight) an compound represented by an eighth chemical formula 8.
Abstract:
A liquid crystal display (LCD) according to an exemplary embodiment of the present invention includes: a first insulation substrate; a lower electrode disposed on the first insulation substrate; a second insulation substrate facing the first insulation substrate; an upper electrode disposed on the second insulation substrate and facing the lower electrode; and a liquid crystal layer disposed between the lower electrode and the upper electrode. The lower electrode forms one unit region, the unit region includes a plurality of subregions, and the lower electrode includes: a first lower electrode including a central pattern disposed at a center of a border between each pair of adjacent subregions, and a plurality of micro branch portions that are coupled to the central pattern, the micro branch portions of two different subregions extending in different directions; and a second lower electrode having intersecting elongated portions that each extend along parts of the border.
Abstract:
A display device includes: a substrate; a plurality of pixel columns on the substrate, each of the plurality of pixel columns including a plurality of pixel groups each including a first pixel and a second pixel arranged along a first direction; and a bank enclosing a perimeter of each of the plurality of pixel groups, the bank including a first opening corresponding to each of the plurality of pixel groups, and a second opening located between two pixel groups adjacent to each other in the first direction among the plurality of pixel groups.
Abstract:
A display device includes electrodes disposed on a substrate, extended in a first direction, and spaced apart from one another in a second direction intersecting the first direction, and light-emitting elements having ends disposed on the electrodes, wherein the electrodes include a first electrode having a first portion and a second portion, and a floating electrode adjacent to the first portion of the first electrode, and a width of the second portion is greater than a width of the first portion in the second direction.
Abstract:
A display device includes a first electrode and a second electrode spaced apart from each other on a substrate, a light-emitting element disposed between the first electrode and the second electrode on the substrate, a third electrode disposed on the first electrode and an end of the light-emitting element, a fourth electrode disposed on the second electrode and another end of the light-emitting element, a first insulation pattern disposed on the third electrode, and a second insulation pattern disposed on the first insulation pattern. An end of the first insulation pattern corresponding to the end of the light-emitting element protrudes toward the another end of the light-emitting element further than an end of the third electrode, and the second insulation pattern fills a space adjacent to the end of the third electrode and formed under the first insulation pattern.
Abstract:
A liquid crystal display device includes first substrate including a display area in which a plurality of pixels are disposed and a non-display area which surrounds the display area, and a light-shielding member disposed on the first substrate, the light-shielding member disposed on boundaries between the plurality of pixels and on the entire non-display area and defining an alignment layer dam pattern, which is in the shape of a recess, in the non-display area, where the alignment layer dam pattern surrounds the display area and has step-type height differences on a side of the display area.