摘要:
A plasma display is disclosed. The display includes driver circuitry which drives the display so that a low level luminance can be generated in a subfield despite high luminance efficient pixels.
摘要:
A plasma display panel includes electrodes repeatedly disposed on a first substrate in an order of a sustain electrode, a scan electrode, a scan electrode and a sustain electrode, first barrier ribs disposed to overlap the sustain electrodes, and second barrier ribs disposed to overlap the scan electrodes and having a lower height than the first barrier ribs, wherein a space between the first barrier ribs and the second barrier ribs forms a main discharge space, a space between adjacent first barrier ribs forms an auxiliary discharge space, and the scan electrodes are formed to protrude to the auxiliary discharge space.
摘要:
A plasma display device and a method of driving the same. Embodiments of the present invention provide a plasma display device and a method of driving the same with a reduced number of power supplies and improved performance. During a reset period, a voltage that gradually increases to two times as much as the sustain voltage is applied to a scan electrode, the sustain electrode is electrically floated during a period of the reset period when the voltage of the scan electrode is gradually decreased. A reference voltage is applied to a plurality of scan electrodes to which a scan voltage is not applied during an address period, as a non-scan voltage.
摘要:
Positive and negative sustain discharge voltages of equal magnitude are alternately applied to a scan electrode while biasing the sustain electrode at 0 V during a sustain interval. The positive sustain discharge voltage is applied through the first end of the scan electrode, and the negative sustain discharge voltage is applied through the second end of the scan electrode. The present invention may remove a brightness variation which may occur toward a direction the scanning electrode extends.
摘要:
A plasma display panel having a plurality of first electrodes and a driver for applying scan signals to the first electrodes in order, the driver having a plurality of selection circuit groups, each selection circuit group having a plurality of selection circuits. Driving signals are applied to the first electrodes through the output ends of selection circuits in one selection circuit group, the output ends being connected in parallel.
摘要:
In a plasma display panel driving method, a final voltage of a falling ramp voltage is reduced to a voltage for firing a discharge at all the discharge cells in a reset period. A difference between a voltage at an address electrode of a discharge cell to be selected and a voltage applied to a scan electrode is established to be greater than a maximum discharge firing voltage in an address period. A voltage greater than a sustain voltage is applied to the scan electrode so as to convert positive wall charges which can be formed on the scan electrode of a discharge cell which is not selected in the address period into negative wall charges.
摘要:
A method for driving a panel includes classifying cells on the panel into a plurality of cell groups and performing an addressing and a sustain discharge on cells included in each of the cell groups using address electrodes, scan electrodes, and common electrodes on the panel; dividing a frame period into a plurality of subfields, allocating different gray scales to the plurality of subfields, respectively, and selectively driving the subfields to represent gradation of visible brightness of the cells on the panel; and sequentially performing an address period and a sustain period on the cell groups in at least one subfield. After the address period is performed on cells included in a cell group, the sustain period is performed on the cells included in the cell group. After the sustain period is completed on one cell group, the address period is performed on another cell group. While the sustain period is performed on one cell group, the sustain period may be selectively performed on other cell groups on which the address period has been performed. Bias voltages applied to the common electrodes while the address period is sequentially performed on the cell groups are different among the cell groups.
摘要:
In a panel driving method, first and second type sub-fields comprise at least two sub-fields in a unit frame. At least one of the first type sub-fields sequentially includes an addressing period for a first display electrode line group, a display-sustain period for the first display electrode line group, an addressing period for a second display electrode line group, and a display-sustain period for the first and second display electrode line groups. At least one of the second type sub-fields sequentially includes an addressing period for the second display electrode line group, a display-sustain period for the second display electrode line group, an addressing period for the first display electrode line group, and a display-sustain period for the first and second display electrode line groups. Moreover, the display-sustain periods of at least two of sub-fields in the unit frame are equal to each other.
摘要:
A plasma display panel having a plurality of first electrodes and a driver for applying scan signals to the first electrodes in order, the driver having a plurality of selection circuit groups, each selection circuit group having a plurality of selection circuits. Driving signals are applied to the first electrodes through the output ends of selection circuits in one selection circuit group, the output ends being connected in parallel.
摘要:
Apparatus and method for a plasma display panel (PDP) for controlling power on external video data and generating power control data into N subfields to represent grays is provided having a plasma panel including a plurality of address electrodes, scan electrodes and sustain electrodes arranged in pairs with the address electrodes, a controller for performing power control on the video data to generate N subfields, generating subfield data and sustain pulse information corresponding to the respective subfields, and outputting a floating control signal for controlling a floating time according to the sustain pulse information, an address data driver for applying a voltage that corresponds to the subfield data to the address electrode, a sustain electrode driver for applying a voltage to the sustain electrode according to the sustain pulse information output by the controller, and a scan electrode driver for controlling the floating time according to the floating control signal, and applying a voltage to the scan electrode according to the sustain pulse information.