摘要:
In one embodiment, a router in a non-originating domain receives a signal to establish a tunnel, the signal having an identification (ID) of an originating path computation element (PCE) of an originating domain from where the signal to establish the tunnel originated. In response to determining that establishment of the tunnel fails, the router may signal the failure of the establishment to a local PCE of the non-originating domain, the signaling indicating the ID of the originating PCE to cause the local PCE to provide updated routing information of the non-originating domain to the originating PCE.
摘要:
In one implementation, the power consumption by network devices may be managed by accessing a routing protocol that manages an allocation of processing resources in a network. The routing protocol may be used for generating a first configuration, for which a utilization of resources may be determined. A first cost for the first configuration may be determined. A second configuration may be identified to support the utilization of the resources. A second cost may be determined for the second configuration. The first cost may be compared to the second cost. The prospective performance of the network for the second configuration may be assessed. Based on the results of the comparison and the assessment, the network may be configured to use the second configuration. Processing resources may be activated on inactive network devices to support the second configuration and deactivated on active network devices that are not utilized in the second configuration.
摘要:
A system receives a packet at a first node. The packet is destined for a second node. The system identifies a full routing node from a plurality of network devices. The full routing node is capable of providing routing information for each of the nodes within the plurality of network devices. The plurality of network devices comprises a subset of nodes, and a subset of full routing nodes. The subset of nodes is not capable of providing routing information for each of the nodes within the plurality of network devices. The system transmits the packet to the full routing node for future transmission to the second node.
摘要:
In one embodiment, software code in a respective computer system such as one or more data communication devices establishes multiple layer 2 network links between a first data communication device and a second data communication device. The first data communication device and the second data communication device include corresponding layer 3 interfaces enabling layer 3 network communications over each of the multiple layer 2 network links. The first and second data communication devices route traffic over one (e.g., a primary layer 2 link) of the multiple layer 2 network links using the layer 3 network communications. The private links are media independent. Upon detection of a failure associated with the primary layer 2 link, the data communication devices can automatically switch to sending traffic over a backup link of the multiple layer 2 network links without disrupting publicly advertised routing topology information.
摘要:
A node in an overlay network requests a ranked list of other nodes in the overlay network that can provide a desired piece of content or service to the requesting node. A separate node such as a router generates the ranked list using a routing algorithm, returning the list to the requesting node so that the requesting node may acquire the desired content or service from the nearest node in the overlay network.
摘要:
In one embodiment, software code in a respective computer system such as one or more data communication devices establishes multiple layer 2 network links between a first data communication device and a second data communication device. The first data communication device and the second data communication device include corresponding layer 3 interfaces enabling layer 3 network communications over each of the multiple layer 2 network links. The first and second data communication devices route traffic over one (e.g., a primary layer 2 link) of the multiple layer 2 network links using the layer 3 network communications. The private links are media independent. Upon detection of a failure associated with the primary layer 2 link, the data communication devices can automatically switch to sending traffic over a backup link of the multiple layer 2 network links without disrupting publicly advertised routing topology information.
摘要:
Various systems and method for rerouting multicast traffic in response to detecting imminent network disruption are disclosed. One method involves detecting an imminent topology change and, in response, identifying a new multicast distribution tree for a multicast group. A join message for the multicast group is then sent towards a root of the new multicast distribution tree. Multicast traffic addressed to the multicast group continues to be forwarded via the current multicast distribution tree, subsequent to sending the join message. The multicast traffic is not forwarded via the new multicast distribution tree until one or more multicast data packets have been received via the new multicast distribution tree.
摘要:
A technique dynamically triggers an exchange of reachability information between a tail-end (remote) domain target node (e.g., a tail-end node) of a traffic engineering (TE) label switched path (LSP) and a local domain head-end node of the TE-LSP in a computer network. The inter-domain information retrieval technique is illustratively based on triggering a Border Gateway Protocol (BGP) session whereby at least a portion of the reachability, i.e., routing, information of the tail-end node is transmitted to the head-end node of the TE-LSP in accordance with BGP. Specifically, once a TE-LSP is established between the head-end node and the tail-end node, the head-end node triggers the tail-end node, e.g., through extensions to a request/response signaling exchange, to establish the BGP session. Establishment of the BGP session enables transmission of the routing information from the tail-end node to the head-end node. The head-end node uses the routing information to calculate routes, i.e., address prefixes and associated attributes, reachable from the tail-end node for insertion into its routing table.
摘要:
A technique calculates a shortest path for a traffic engineering (TE) label switched path (LSP) from a head-end node in a local domain to a tail-end node of a remote domain in a computer network. The novel path calculation technique determines a set of different remote domains through which the TE-LSP may traverse to reach the tail-end node (e.g., along “domain routes”). Once the set of possible routes is determined, the head-end node sends a path computation request to one or more path computation elements (PCEs) of its local domain requesting a computed path for each domain route. Upon receiving path responses for each possible domain route, the head-end node selects the optimal (shortest) path, and establishes the TE-LSP accordingly.
摘要:
A technique selects a traffic engineering (TE) label switched path (LSP) from among a plurality of TE-LSPs, each of which spans multiple domains of a computer network from a head-end node of a local domain to a tail-end node of a remote domain, in order to reach one or more address prefixes within the remote domain. The inter-domain TE-LSP selection technique comprises a selection algorithm executed by the head-end node and based on predetermined TE-LSP attributes (e.g., bandwidth, cost, etc.) and/or address prefix reachability attributes (e.g., cost from a tail-end node to the prefix) to select an appropriate inter-domain TE-LSP for the reachable address prefix. The selection algorithm is embodied in one of two modes: (i) a hierarchical selection mode, or (ii) a weighted selection mode. In addition, the technique comprises a load balancing aspect that cooperates with the selection algorithm to enable the head-end node to balance traffic loads among the multiple TE-LSPs based on the results of the selection algorithm.