Abstract:
A cooling system integrated into a stator assembly of a gas turbine engine has an on-board injector or cooling nozzle located for cooling of a rotor assembly. The nozzle may be generally annular and may contain a plurality of pivoting airfoils circumferentially spaced from one-another for directing cooling air flow from the nozzle and generally toward a plurality of holes in a cover of the rotor assembly. The pivoting airfoils are adapted to move between a spoiled state where the mass flow of cooling air is reduced, and to an optimal state where the mass flow is increased. The system may further include a plurality of fixed airfoils in the nozzle with adjacent fixed airfoils defining a discharge orifice in the nozzle. Each one of the plurality of pivoting airfoils may be located in a respective discharge orifice.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
A variable vane pack includes an inner platform, an outer platform, radially outward of the inner platform, a plurality of vanes connecting the inner platform to the outer platform, wherein the outer platform comprises a platform body and an impingement plate, the impingement plate having a radially inward impingement plate, a radially outward pressure distribution plate, and an impingement plenum defined between the radially inward impingement plate and the radially outward pressure distribution plate.
Abstract:
A core for use in casting an internal cooling circuit within a gas turbine engine component includes a base core portion and an additive core portion additively manufactured to the base core portion. A method of manufacturing a core for use in casting an internal cooling circuit within a gas turbine engine component including additively manufacturing an additive core portion to a base core portion.
Abstract:
A pivoting turbine vane has an airfoil, an inner bearing race and an outer bearing race, with the inner and outer bearing races on a pivot axis of the pivoting turbine vane. There are cooling air passages through at least one of the inner and outer bearing races to provide cooling air from a remote facing face of at least one of the inner and outer bearing races to an airfoil facing face of at least one of the inner and outer bearing races. A turbine section is also disclosed.
Abstract:
Airfoils for gas turbine engines are described. The airfoils include an airfoil body extending between a platform and a tip, the airfoil body having a leading edge, a trailing edge, a pressure side, and a suction side, a serpentine cavity formed within the airfoil body and having an up-pass serpentine cavity, a down-pass serpentine cavity, and a trailing edge cavity, and a dead-end tip flag cavity extending in a direction between the leading edge and the trailing edge, the dead-end tip flag cavity arrange between the serpentine cavity and the tip, wherein the dead-end tip flag cavity ends at a dead-end wall located at a position between the leading edge and the trailing edge of the airfoil body.
Abstract:
A gas turbine engine including a compressor section, a combustor section fluidly connected to the compressor section, a turbine section fluidly connected to the combustor section, and a plurality of gas path components exposed to a primary fluid flowpath through the compressor section, the combustor section and the turbine section. At least one of the gas path components includes an exterior facing surface, a lattice structure extending outward from the exterior facing surface, the lattice structure being integral to the exterior facing surface, and a thermal barrier coating adhered to at least a portion of the exterior facing surface and the lattice structure.
Abstract:
A method for applying a coating to a substrate having a plurality of holes. The method comprises: applying a braze material to a substrate having a plurality of holes; heating the substrate to melt the braze material to form a melt; cooling the substrate to solidify the melt to form plugs in the respective holes; applying a coating to the substrate; and further heating the substrate to melt the plugs.
Abstract:
A gas turbine engine component includes a structure having a surface configured to be exposed to a hot working fluid. The surface includes a recessed pocket that is circumscribed by an overhang. At least one cooling groove is provided by the overhang.
Abstract:
An auxiliary power unit may comprise a twin centrifugal compressor including a first blade. A turbine may be disposed aft of the twin centrifugal compressor. The turbine may include a second blade. The first blade comprises a first material and the second blade comprises a second material. The first material may the same as the second material. The twin centrifugal compressor may include forward centrifugal compressor and an aft centrifugal compressor disposed aft of the forward centrifugal compressor.