摘要:
A method, apparatus and computer program product are therefore provided according to an example embodiment to distribute and utilize location information received from one or more networks to determine handover timing and target cell selection for a mobile terminal. A method also includes determining a predicted future mobile terminal location based on the location information for the mobile terminal. A method also includes determining at least one network entity with a serving area that encompasses the predicted future mobile terminal location. A method also includes causing the at least one network entity to receive handover instructions by causing the predicted future mobile terminal location and information regarding the at least one network entity to be transmitted to a network management node.
摘要:
A method, apparatus and computer program product are therefore provided according to an example embodiment to provide a cellular based ITS environment. The cellular based ITS environment may be configured based on LTE based interfaces. In this regard, a method includes receiving configuration information from a first access point, wherein the configuration information defines an ITS target area comprising at least the first access point and a first RSU. A method also includes receiving an ITS paging message from the first access point. A method also includes causing a reselection of the first RSU while in the communications range of the first access point in the ITS target area and in response to the received ITS paging message.
摘要:
RRC signaling is used to configure a user device for N secondary cells SCells on license-exempt channels wi in a frequency hopping channel set W={wi} where i=1, 2, . . . N. Then cross-carrier scheduling is sent on a primary cell PCell to schedule a frequency hopping FH resource block hi on the ith license-exempt channel wi. Based on measurements of at least some of the license-exempt channels wi received from at least the user device, parameters for the frequency hopping are adapted. The FH resource block contains M physical resource blocks, scheduled for the SCell during a FH time interval Tu*L+j by a resource grant sent on a PDCCH of the PCell. In an embodiment the RRC signaling is sent by a micro access node/HeNB on the PCell, the cross carrier scheduling is sent also by the micro access node/HeNB on the PCell, and the PCell lies within an LTE licensed frequency band.
摘要:
A method and apparatus are therefore provided that may enable the provision of M2M communication in a wireless network environment. In this regard, for example, relatively low power devices (specifically referencing low transmission power) such as sensors or other machines in an M2M system may be enabled to initiate communication with a network through a mobile terminal in a more reliable and robust manner. The machine may transmit a busy-signal to request a reservation of a machine access slot on a machine access control channel to reserve the slot before transmitting any machine information or data to reduce the likelihood of collisions with other machines. Once the machine has reserved the machine access slot, the machine may transmit identification information via randomly selected frequency division multi-plexed or code division multiplexed resources to further reduce the likelihood of collisions with other machines. Thus, delays in establishing connections may be reduced or eliminated.
摘要:
A source sends an encoded data block during a first time interval to a destination and to a relay. The source sends additional parity bits for the encoded data block during a second time interval. The relay partially decodes that encoded data block to a process-defined end point (typically only a partial decoding), such as a fixed number of decoding iterations. After partial decoding the relay forms a modified data block having corrected information bits and the parity bits of the block it received, and sends the modified data block to the destination, during the second time interval. The destination decodes to a results-defined end point the modified data block it received from the relay using the additional parity bits it received from the source. If that end-point cannot be reached, the destination may begin anew decoding the original encoded data block it received from the source.
摘要:
A method and apparatus are provided to facilitate communications with MTC devices. An apparatus may include processing circuitry configured at least to receive a broadcasted triggering message and to determine whether the triggering message identifies a machine-type communication (MTC) gateway or another device within a capillary network supported by the MTC gateway. The processing circuitry may cause at least a portion of the triggering message to be provided to a device within the capillary network in an instance in which the triggering message identifies the device within the capillary network. The processing circuitry may also be configured to determine an action requested by the triggering message in an instance in which the triggering message identifies the MTC gateway.
摘要:
A network access node selects one chunk of spectrum from a plurality of chunks of spectrum to be a primary chunk for a particular cell; transmits in the primary chunk from a broadcast channel BCH that contains information needed by a terminal to at least perform initial cell access; and uses a synchronization channel SCH to indicate which chunk of the plurality of chunks is the primary chunk. A user equipment receives a SCH in a particular chunk of spectrum; determines from it that one chunk is a primary chunk for a particular cell; tunes its receiver to a BCH in the primary chunk and uses information received on the BCH to obtain initial access to the particular cell. In various embodiments the SCH is only in the primary chunk or the SCH has some indication (e.g., cell ID or relative position of primary chunk) telling which chunk is primary.
摘要:
The invention is related to a synchronization method in a communication system. The invention includes: carrying out a coarse time offset and frequency offset estimation, first estimating errors in the coarse time-offset and frequency offset estimation by using a maximum-likelihood time-offset estimation and joint optimisation of time-offset and frequency-offset, second estimating frequency offset and time offset by using error estimates in a closed tracking loop.
摘要:
Various embodiments are disclosed relating to carrier selection for a home network. In an example network, a method may include using a first carrier frequency to transmit in a downlink direction to a mobile node in a home wireless network, and receiving, from the mobile node, a signal strength measurement for each of a plurality of carrier frequencies. The method may further include receiving, from the mobile node, an error report for the first carrier frequency, and determining that a link quality for the first carrier frequency is below a threshold based on the error report. The method may further include selecting a second carrier frequency from the plurality of carrier frequencies based on the determining and based on the signal strength measurement of the second carrier frequency, and changing, based on the selecting, from the first carrier frequency to the second carrier frequency to transmit data in a downlink direction to the mobile node.
摘要:
Disclosed herein are apparatus, methods and computer program products for performing cell acquisition and pilot sequence detection in a cellular telecommunications system such as, for example, an OFDM system. In the apparatus, methods and computer program products, a primary synchronization channel sequence and a secondary synchronization channel sequence are transmitted by a base station in a sub-frame of an OFDM downlink frame. In one embodiment, the primary synchronization channel sequence, secondary synchronization channel sequence, and system information are mapped to a plurality of sub-carriers in an FDM signal. At the user equipment, coarse synchronization is performed during cell acquisition by performing a cross correlation between the signal and a reference primary synchronization channel sequence stored in a memory of the user equipment. The coarse synchronization performed using the primary synchronization channel sequence is improved by performing a cross correlation between the signal and a reference secondary synchronization channel sequence stored in a memory of the user equipment. Identification of a pilot sequence for channel estimation purposes is performed by detecting two cyclically invariant pairs of secondary synchronization channel sequences over two consecutive frames of the signal. The cyclically invariant pair of secondary synchronization channel sequences are selected from a set of orthogonal sequences and identify a particular pilot sequence incorporated in the signal.