Abstract:
A multi-ply absorbent sheet of cellulosic fiber with continuous outer surfaces is provided an absorbent core between the outer surfaces. The absorbent core includes a non-woven fiber network having: (i) a plurality of pileated fiber enriched regions of relatively high local basis weight interconnected by way of (ii) a plurality of lower local basis weight linking regions whose fiber orientation is biased along the direction between pileated regions interconnected thereby, and (iii) a plurality of fiber-deprived cellules between the fiber enriched and linking regions, also being characterized by a local basis weight lower than the fiber enriched regions. The cellules provide a sponge-like internal structure of low fiber density regions.
Abstract:
A method relates to the production of paper rolls for examination tables, obtained from a tape (100) of embossed paper, having two layers (10, 20), joined together. The band (100) is obtained in known way from two continuous webs (1, 2), subjected to subsequent steps of embossing, glue (C) application, coupling and stabilization. The method includes applying measured quantities of a sanitizing and/or disinfectant substance (S) between the two layers of embossed paper (10, 20) before their joining; preferably, the substance (S) is applied to the same continuous web (1) that is aimed at receiving the glue (C), after the embossing step and contemporarily with the glue (C) application, by spot-application of a mixture (M) in aqueous solution containing suitable percentage of the glue (C) and sanitizing substance (S) to the tops (11A) of the embossing relieves (11.) In this case, the application means (240) for sanitizing substance (S) are formed by the same means (220) for applying the glue (C).
Abstract:
A multi-ply absorbent sheet of cellulosic fiber with continuous outer surfaces is provided an absorbent core between the outer surfaces. The absorbent core includes a non-woven fiber network having: (i) a plurality of pileated fiber enriched of relatively high local basis weight interconnected by way of (ii) a plurality of lower local basis weight linking whose fiber orientation is biased along the direction between pileated interconnected thereby, and (iii) a plurality of fiber-deprived cellules between the fiber enriched and linking regions, also being characterized by a local basis weight lower than the fiber enriched regions. The cellules provide a sponge-like internal structure of low fiber density regions.
Abstract:
An apparatus for producing an embossed product including a first embossing member having a plurality of discrete embossing elements disposed in a first non-random pattern having at least one first single pattern unit. The total area of the distal ends of the discrete embossing elements in the first single pattern unit is less than about 5.0 cm2. The apparatus also includes a second embossing member having a plurality of linear embossing elements disposed in a second non-random pattern having at least one second single pattern unit. The total area of the second distal ends in the second single pattern unit is less than about 10 cm2. The second non-random pattern is coordinated with the first non-random pattern such that when engaged with each other the first single pattern unit and the second single pattern unit make up an embossing pattern single pattern unit.
Abstract:
A process for manufacturing a multi-ply paper product, the having the steps of: providing a first paper web; providing a second paper web; and providing a converting apparatus. The converting apparatus has a first pressure roll; an embossing roll; a second pressure roll; and a marrying roll. The embossing roll has a plurality of embossing protrusions wherein each embossing protrusion has a distal end. The first pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a first nip therebetween. The first nip has a first nip width. The first pressure roll and embossing roll are adapted to receive the first paper web at the first nip. The second pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a second nip therebetween. The second nip has a second nip width. The second pressure roll and embossing roll are adapted to receive the first paper web, after the first paper web has traversed the first nip, and the second paper web at the second nip. The marrying roll is juxtaposed in an axially parallel relationship with the embossing roll to form a third nip therebetween. The marrying roll and embossing roll are adapted to receive the first paper web and the second paper web, after the first paper web and the second paper web have traversed the second nip, and provide a marrying load of greater than about 100 pli after the first paper web has traversed the first nip, and marry the first paper web to the second paper web. The process includes the steps of: forwarding the first paper web through the first nip such that portions of the first paper web are embossed at the first nip to provide an embossed first paper web; forwarding the embossed first paper web and the second paper web through the second nip such that that the embossed portions of the first paper web are further embossed and portions of the second paper web are embossed and are registered with the embossed portions of the first paper web to provide a double-embossed first paper web and a embossed second paper web; and forwarding the double-embossed first paper web and the embossed second paper web through the third nip whereby the embossed portions of the first paper web and the embossed portions of the second paper web are married to provide an embossed multi-ply paper product.
Abstract:
A process for manufacturing a multi-ply paper product, the process having the steps of: providing a first paper web; providing a second paper web; and providing an apparatus. The apparatus includes: a first pressure roll; an embossing roll; a marrying roll; and a second pressure roll. The embossing roll has a plurality of embossing protrusions wherein each embossing protrusion has a distal end. The first pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a first nip therebetween. The first nip has a first nip width. The first pressure roll and the embossing roll are adapted to receive a first paper web at the first nip. The adhesive application roll and the embossing roll are juxtaposed in an axially parallel relationship to form a gap therebetween. The adhesive application roll and the embossing roll are adapted to receive the first paper web, after the first paper web has traversed the first nip, at the gap. The marrying roll is juxtaposed in an axially parallel relationship with the embossing roll to form a third nip therebetween. The marrying roll and embossing roll are adapted to receive the first paper web and a second paper web, after the first paper web has traversed the gap, and marry the first paper web to the second paper web at the third nip. The second pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a third nip therebetween, wherein the second nip has a second nip width, and wherein the second pressure roll and embossing roll are adapted to receive the first paper web and the second paper web, after the first paper web and the second paper web have traversed the third nip, at the second nip. The process also includes the steps of: forwarding the first paper web through the first nip such that portions of the first paper web are embossed at the first nip to provide an embossed first paper web; forwarding the embossed first paper web through the gap such that the embossed portions of the first paper web receive adhesive from the adhesive application roll to provide an adhesively provided first paper web; forwarding the adhesively provided first paper web and the second paper web through the third nip such that the embossed, adhesively provided portions of the first paper web are married to portions of the second paper web to form a multi-ply paper product; forwarding the multi-ply paper product through the second nip such that portions of the multi-ply paper product are embossed to provide an embossed multi-ply paper product.
Abstract:
The present invention relates to a multi-ply sheet including a first ply (12) and a second ply (14) each made of tissue paper and each exhibiting a specific surface weight between 12 and 35 g/m2, the first ply including a first embossing pattern which is imprinted in first zones (16) and which has first protrusions (18) projecting from the inner surface of the first ply and corresponding to alveoles on the outer surface that constitute in particular first arrays, at least part of the protrusions' tops (19) being linked to the opposite inner surface of the second ply (14). This sheet is characterized in that the first ply (12) includes a second embossing pattern constituted by second protrusions (38) projecting from the first ply's inner surface and of which the height relative to the first protrusions is shallower, the density with respect to area of the second protrusions being greater and at least part of their tops being situated in the same plane as the tops of the first protrusions and at least part of the first ply's second protrusions' tops being linked to the inner surface of the second ply.
Abstract translation:本发明涉及一种多层片材,其包括由薄纸制成的每层由第一层(12)和第二层(14)组成的层,每层具有12至35g / m 2 / >,第一层包括印在第一区域(16)中的第一压花图案,并且其具有从第一层的内表面突出并对应于构成特别是第一阵列的外表面上的外壁的第一突起(18) 至少部分突起顶部(19)连接到第二层(14)的相对的内表面。 该片材的特征在于,第一层(12)包括由从第一层内表面突出的第二突起(38)构成的第二压花图案,其中相对于第一突起的高度较浅,相对于区域的密度 所述第二突出部的至少一部分位于与所述第一突起的顶部相同的平面中,并且所述第一帘布层的第二突起的顶部的至少一部分连接到所述第二帘布层的内表面。
Abstract:
The present invention relates to embossed tissue-towel paper products comprising one or more plies of tissue paper wherein at least one of the plies of tissue paper comprises a plurality of embossments wherein the at least one embossed plies have a total embossed area less than or equal to about 15% and an average embossment height of at least about 650 μm and E factor of between about 0.0150 to about 1.0000 inches4 per number of embossments.
Abstract:
A multiply tissue product comprising at least two plies of a tissue interconnected to each other. The multiply tissue further comprises a layer including super absorbent fiber-like particles in at least one interface region in between two adjacent plies of the tissue webs, wherein the basis weight of the layer is between about 0.5% and about 50% of the overall basis weight of the two adjacent plies of tissue.
Abstract:
An apparatus for producing a deep-nested embossed product including a first embossing member and a second embossing member. The first embossing member has a plurality of discrete embossing elements disposed in a first non-random pattern. The second embossing member has a plurality of second embossing elements including at least one linear embossing element. The second embossing elements are disposed in a second non-random pattern such the first non-random pattern and the second non-random pattern nest together to a depth of greater than about 0.01 mm.