Abstract:
Disclosed is a knockdown shelving system which comprises a plurality of connected shelves with storage compartments that are configured to store vehicle wheels or tires upright and parallel to each other. Vertical posts are located at each corner of the connected shelves and shared between adjacent shelves. The vertical posts are formed of a rolled hollow T-profile which comprises rows of longitudinally spaced perforations that extend along the vertical posts. The vertical posts are connected by lengthwise and crosswise struts, the struts having hooks which engage the perforations of the vertical posts. Storage compartments for tires or wheels are formed by tire carriers which are placed onto lengthwise struts and extend parallel between front and rear vertical posts, and by crosswise struts which extend perpendicular to the tire carriers between two front vertical posts and two rear vertical posts, respectively.
Abstract:
A tool for lifting truck tires from a prone position to an upright position. The tool has a frame which extends over the length of a truck tire to a leverage point at one end of the tire. The frame is attached to a plate which is adapted to slide underneath the other side of the truck tire. Two handles extend from the frame at an angle and a length to allow maximum leverage for an operator of the tool. The frame may have many shapes, but preferably is angled to exert force at a point opposite the plate.
Abstract:
A drive roller assembly for engaging a conveyor belt assembly for movement of a conveyor belt includes a sandwich assembly of components including a pair of outer annular scalloped wheels for engaging a conveyor belt for its movement, a rectilinear drive shaft running through the drive nut, and bolt assemblies to hold the sandwich assembly together.
Abstract:
A tire loading apparatus and method of packing tires that includes placing the tires in a rack, compressing the tires, and assembling the rack are disclosed. The apparatus includes one or more conveyors, scanners, and robots that load tires from a conveyor to a rack. A tire unloading apparatus is also disclosed. The unloading apparatus includes a scissor mechanism to raise and/or lower tire racks to an unloading platform. The unloading apparatus additionally includes one or more unloaders and conveyors. The sorting and unloading of tires is accomplished with one or more automated conveyors, scanners, and storage structures for reading information from incoming tires and using the tire information to sort and store the tires. A rack to improve compression and support of tires during storage and shipment is also disclosed.
Abstract:
An improved conveyor assembly includes a conveyor belt for conveying a product to one or more product operations is disclosed. Such conveyor assembly includes a pair of spaced apart side frames that support the conveyor belt and between which the conveyor belt rotates. The side frames are formed from an upstanding member and a inwardly extending horizontal member. Both the frame upstanding member and the frame horizontal member carry a series of elongated slots. One or more L-shaped brackets are formed from a generally upstanding member and an inwardly extending member. Both the bracket upstanding member and the bracket horizontal member carry a series of elongated slots. The bracket horizontal member slots are configured to overlay the frame elongate horizontal member slots, and the bracket upstanding member slots are configured to overlay the frame upstanding member slots for attaching components to the frames.
Abstract:
Apparatus and method for reorienting a toroidally shaped core configured to carry a green tire. The core includes a central axis defined through first and second oppositely facing tapered recesses respectively including first and second locking mechanisms. The apparatus includes a core support structure including a base and a reorientation member connected for movement relative to said base and a core coupling member. The core coupling member connects for movement with the reorientation member and includes a core locking mechanism that couples with the core coupling member and locks the core coupling member to the core. A drive system couples with the reorientation member and operatively moves the reorientation member so as to change the orientation of the central axis from a first orientation to a second, different orientation transverse to the first orientation.
Abstract:
A conveyor system and associated method for conveying tires received from a multiplicity of tire presses. The conveyor system shown comprises a main, or trench, conveyor flanked on opposite sides by opposing groups of tire presses. Discharge conveyors deliver tires from the tire presses to the main conveyor at multiple positions along the length of the main conveyor. The tires are delivered from both sides of the main conveyor, which conveys them downstream. An open-loop sequencer activates each discharge conveyor to deliver tires to the main conveyor according to a schedule including the sequence of activating each of the discharge conveyors so as to avoid collisions between tires on the main conveyor.
Abstract:
A tire loading apparatus and method of packing tires that includes placing the tires in a rack, compressing the tires, and assembling the rack are disclosed. The apparatus includes one or more conveyors, scanners, and robots that load tires from a conveyor to a rack. A tire unloading apparatus is also disclosed. The unloading apparatus includes a scissor mechanism to raise and/or lower tire racks to an unloading platform. The unloading apparatus additionally includes one or more unloaders and conveyors. The sorting and unloading of tires is accomplished with one or more automated conveyors, scanners, and storage structures for reading information from incoming tires and using the tire information to sort and store the tires. A rack to improve compression and support of tires during storage and shipment is also disclosed.
Abstract:
An automated system for storing pallets for loading green tires, taking said pallets into a warehouse and taking said pallets out of the warehouse includes a conveyor section for taking pallets on which green tires are loaded into a warehouse; a gantry robot section for transferring said pallets to be taken out of the warehouse into a conveyor for taking said pallets out of the warehouse when said pallets are taken out of the warehouse while the warehoused pallets are transferred to a location on which said pallets are stacked; and a conveyor section for taking said pallets out of the warehouse by said gantry robot, in which the above gantry robot is operated in the directions of X axis, Y axis and Z axis.
Abstract:
A method for shipping very large tires which are typically used on very large vehicles such as earthmovers. The tires can be shipped so that less shipping and storage space is required.