Abstract:
An ozone generator system (1) in which a multitude of plate type ozone generators (2) are arranged adjacent to each other in a block (3). Each ozone generator comprises a chamber, adapted for converting oxygen to ozone by a corona discharge, and each chamber is provided with an inlet for oxygen or an oxygen-rich gas and an outlet for ozone. Said ozone generators are arranged in a block module (26) in which they are affixed by a block rack (4). Said block rack comprises an inlet port (5) adapted for introduction of oxygen gas, and an outlet port (6) adapted for discharge of ozone created through conversion within the generators comprised in the block module. A multitude of first conduits (7), each running between said inlet port and one chamber inlet, and a multitude of second conduits (8), each running between said outlet port and one chamber outlet, are provided within said block rack. Said conduits are arranged so that the flow distance between the inlet and outlet ports has the same length, regardless of which generator the introduced gas passes through, thereby achieving an even gas pressure and gas flow, through parallel connection of the generators.
Abstract:
A process and reactor for chemical conversion is taught. The process allows the selective breaking of chemical bonds in a molecule by use of fast rise alternating current or fast rise pulsed direct current, each fast rise portion being selected to have a suitable voltage and frequency to break a selected chemical bond in a molecule. The reactor for carrying out such a process includes a chamber for containing the molecule and a generator for generating and applying the selected fast rise current.
Abstract:
The present invention is a low temperature ozone generator using a cryogenic cooling medium. The present invention also provides an efficient method of producing ozone using a cryogenic cooling medium. Finally, the invention is to a method for producing ozone efficiently using liquid nitrogen as the cooling medium.
Abstract:
An apparatus for producing ozone from oxygen comprises a high voltage electrode connectable to a current source; a ground electrode spaced from the high voltage electrode and having an upstream end and a downstream end; a dielectric element positioned between the high voltage electrode and the ground electrode; a path for air flow positioned between the dielectric element and the ground electrode; and, a current collector positioned downstream of the high voltage electrode and comprising an extension of the ground electrode.
Abstract:
A reactive gas generator cell includes a high voltage assembly having a high voltage electrode plate and a low voltage assembly having a low voltage electrode plate. Each of the high and low voltage assemblies may include a cover plate and a channel plate. A welded metallic seal may join the high voltage assembly and the low voltage assembly to create a permanently sealed chamber between the assemblies. A refractory metal surface, which may be a tungsten surface, is disposed on at least one of the low voltage electrode plate and the high voltage electrode plate. A dielectric barrier is disposed between the high voltage electrode plate and the low voltage electrode plate. A discharge region for confining a reactive gas is defined, at least in part, by the refractory metal surface and a surface of the dielectric barrier. A spacer, which may be formed from a refractory material, may be positioned between the surface of the dielectric barrier and the refractory metal surface to define a predetermined gap.
Abstract:
This device is a gas ionization device which can also be referred to as a corona discharge type of ozone generator. The design is tubular comprised of an inner and outer concentric metal electrode and ground plane with a glass dielectric tube disposed between them. Gas is passed between the dielectric and the ground plane for the purpose of producing concentrations of ozone. The electrode as well as the ground plane are designed to permit cooling of the ozone producing chamber. An electro-static field enhancing technique effectively produces a significant greater amount of ozone as a result.
Abstract:
An ozonizer for refreshing the room with clean air and lessening the green house effect, generally comprising of a base, a housing, a high voltage unit, an air compressor, and an ozone converter.
Abstract:
Ozone is added to captured water by a method and apparatus which involves corona discharge into an oxygen-containing gas in regions in a generator which alternate with regions where the newly formed ozone is cooled. The alternating corona and cooling regions permit the ozone to form without being thermally decomposed as soon as it is formed. Also disclosed is an overall system and method of controlling the level of dissolved ozone in a body of captured water which modulates the output of an ozone generator in accordance with readings of oxidation-reduction potential in the water.
Abstract:
An ozone generator of the type having a high tension electrode and a grounded electrode mounted in a spaced relation, one of the electrodes having a dielectric member applied to or mounted on one of the surfaces of the electrode, the dielectric member including a layer of resilient dielectric material having a coating of particles of an inorganic material either sprinkled on or embedded in the surface of said dielectric material facing the other electrode and a timing circuit connected to said electrodes to provide a constant voltage pulse at intermittent time intervals, the voltage pulses being controlled by a silicon controlled rectifier and the frequency of said rectifier being controlled by a bilateral mosfet.
Abstract:
A corona discharge ozone generating apparatus comprises a plurality of plate-like electrodes arranged in a stack. Alternate ones of the electrodes are electrically earthed, hollow and have a fluid medium passed therethrough for cooling. The remaining electrodes are each mounted on respective insulating frames sandwiched between two plates of dielectric material. Each frame, and the electrode and dielectric plates which are carried thereby, bound a pair of discharge spaces in which ozone is generated and the frame includes two end portions which hold the electrode and plates, one end portion having holes therein communicating with the interior of a housing in which the stack is located so as to admit air or oxygen gas to the interior of the discharge space while the other end portion has openings therein communicating with a conduit for removing generated ozone from the housing. The second end portion is provided with sealing lips surrounding the openings therein so as to permit a leak-tight seal to the conduit.