Abstract:
A method of developing a petroleum reservoir from a reservoir model constrained by the production data and seismic attributes. Production data and seismic data are acquired during the development of the reservoir. A first image of a seismic attribute is constructed from the seismic data. Production responses are simulated from a reservoir model using a flow simulator. An image corresponding to the seismic attribute is simulated from the reservoir model. A local dissimilarity map is constructed from the reference seismic attribute image and from the simulated seismic attribute image. The reservoir model is modified to minimize any difference between the measured production data and the corresponding production responses and to minimize local dissimilarities. This model is used to determine an optimal development scheme and the reservoir is developed according to the development scheme.
Abstract:
A method of improving a geologic model of a subsurface region. One or more sets of parameter values are selected. Each parameter represents a geologic property. A cost and a gradient of the cost are obtained for each set. A geometric approximation of a parameter space defined by one or more formations is constructed. A response surface model is generated expressing the cost and gradient associated with each formation. When a finishing condition is not satisfied, at least one additional set is selected based at least in part on the response surface model associated with previously selected sets. Parts of the method are repeated using successively selected additional sets to update the approximation and the response surface model until the finishing condition is satisfied. Sets having a predetermined level of cost to a geologic model of the subsurface region and/or their associated predicted outcomes are outputted to update the geologic model.
Abstract:
Apparatus and methods for controlling equipment to recover hydrocarbons from a reservoir including constructing a collection of reservoir models wherein each model represents a realization of the reservoir and comprises a subterranean formation measurement, estimating the measurement for the model collection, and controlling a device wherein the controlling comprises the measurement estimate wherein the constructing, estimating, and/or controlling includes a rolling flexible approach and/or a nearest neighbor approach.
Abstract:
A method for processing seismic data. The method includes performing a plurality of stochastic simulations for one or more rock model parameters to generate one or more anisotropic parameters for a subsurface area of the earth. The method then derives one or more joint multi-dimensional probability density functions for the anisotropic parameters. Using the joint multi-dimensional probability density functions and measured well log data, the method computes one or more posterior probability density functions. The method then includes deriving one or more anisotropic profiles from the posterior probability density functions and generating a seismic image from the anisotropic profiles.
Abstract:
The present invention relates to a system mapping geological formations related to seismic studies comprising interrogation means for sampling information from geological features in a mapped area, e.g. through seismic sampling methods, the sampled information being stored in association with a position related to the sampled information providing a mapping of the area, wherein the system also comprises analyzing means for obtaining attribute information related to the sampled information in each position and storing said attribute information associated to said positions so as to provide an ensemble of attribute values related to the mapped area subject to the seismic studies.
Abstract:
A method of modifying a geological model representative of an underground reservoir is disclosed which respects average proportions of the lithologic facies imposed by a production data calibration process which has application to petroleum reservoir development. A geographical zone Z is defined within the geological model and an average proportion in zone Z allowing the production data to be calibrated is determined for k facies, with an optimization process. The proportions of these facies are modified using a block indicator cokriging method constrained by the average proportions to be respected. A new geological model constrained by the modified facies proportions is simulated and the development of the underground medium is optimized by the simulated model.
Abstract:
A computer-implemented method, system, and computer program product are disclosed for updating simulation models of a subterranean reservoir. An ensemble of reservoir models representing a subterranean reservoir having non-Gaussian characteristics is provided and the ensemble of reservoir models is updated using a subspace ensemble Kalman filter. Kemal principle component analysis parameterization or K-L expansion parameterization can be used to update the ensemble of reservoir models.
Abstract:
A method for generating one or more geological models for oil field exploration. The method includes receiving one or more well facies logs, a vertical facies proportion curve, a lateral proportion map, a variogram model and a global target histogram. The method then includes generating a facies probability cube using a modified Sequential Gaussian Simulation (SGSIM) algorithm, the well facies logs, the vertical facies proportion curve, the lateral proportion map and the variogram model. After generating the facies probability cube, the method includes matching the facies probability cube to the global histogram and generating the geological models based on the matched facies probability cube.
Abstract:
A method of modeling porosity and permeability in a subsurface region includes modeling a sparse data set as a mixture of Gaussian distributions, each with a cluster center in permeability-porosity space using permeability-porosity covariance. A number and location of cluster centers as well as covariances and probabilities of each cluster are derived using an interative maximum-likelihood algorithm.
Abstract:
A method of representing and using fractures in a model of a subterranean reservoir is described including the partitioning the fracture network into a discretely modeled part and a remaining statistically described part from a statistical description of all fractures, the determination of the correlation effects caused by fractures with dimensions exceeding dimension of the local grid cells and the determination of petrophysical properties while allowing for arbitrary distribution of facture orientations, with all three aspects being combinable to improve the modeling of fractures and the simulation of fractured reservoirs.