Abstract:
A method can include receiving realizations of a model of a reservoir that includes at least one well where the realizations represent uncertainty in a multidimensional space; selecting a portion of the realizations in a reduced dimensional space to preserve an amount of the uncertainty; optimizing an objective function based at least in part on the selected portion of the realizations; outputting parameter values for the optimized objective function; and generating at least a portion of a field operations plan based at least in part on at least a portion of the parameter values.
Abstract:
A Bayesian methodology is described for designing experiments or surveys that are improved by utilizing available prior information to guide the design toward maximally reducing posterior uncertainties in the interpretation of the future experiment. Synthetic geophysical tomography examples are used to illustrate benefits of this approach.
Abstract:
Managing oilfield operations include obtaining a subsurface model including a fracture design model having an fracture property with an uncertain value. A set of representative values that represent uncertainty in the fracture property is obtained and used to solve an oilfield optimization problem with a control variable to obtain a solution. The solution includes an optimal value for the control variable. Based on the solution, an oilfield design is generated and stored.
Abstract:
A method for estimating a value of a kerogen property in a subsurface formation where the value of the kerogen property is unknown. The method includes: measuring spectral intensity values over an infrared (IR) spectral range for a selected sample from the subsurface formation; determining a range of values representing the measured spectral intensity values corresponding to a vibrational mode attributable to kerogen in the selected sample, the range of values including values representing uncertainty in the measured spectral intensity over the portion of the spectral range; and inputting values from the range of values into a stochastic or simple regression model to determine an estimated value of the kerogen property in the selected sample.
Abstract:
Apparatus and methods of categorizing a subterranean formation including collecting data related to the formation, performing an algorithm comprising guided Bayesian survey design, identifying data observations to collect, and collecting additional data observations related to the formation. In some embodiments, the performing comprises forming a matrix or loading a matrix or both. Apparatus and methods of categorizing a subterranean formation including collecting data related to the formation, performing an algorithm comprising guided Bayesian survey design, identifying data observations to use, and processing the data observations wherein the observations require less processing time than if no algorithm were performed.
Abstract:
Managing oilfield operations include obtaining a subsurface model including a fracture design model having an fracture property with an uncertain value. A set of representative values that represent uncertainty in the fracture property is obtained and used to solve an oilfield optimization problem with a control variable to obtain a solution. The solution includes an optimal value for the control variable. Based on the solution, an oilfield design is generated and stored.
Abstract:
A method, a system, and a computer readable medium for analyzing a wavelet within a seismic signal are described herein. The method includes receiving a seismic signal from a seismic receiver, such as a geophone, and using a Bayesian probability method to determine an associated arrival time for the wavelet and determine an uncertainty for the arrival time of the wavelet. The method has application in hydraulic fracturing monitoring operations and in spatially mapping fractures.
Abstract:
A method can include receiving realizations of a model of a reservoir that includes at least one well where the realizations represent uncertainty in a multidimensional space; selecting a portion of the realizations in a reduced dimensional space to preserve an amount of the uncertainty; optimizing an objective function based at least in part on the selected portion of the realizations; outputting parameter values for the optimized objective function; and generating at least a portion of a field operations plan based at least in part on at least a portion of the parameter values.
Abstract:
A method can include receiving realizations of a model of a reservoir that includes at least one well where the realizations represent uncertainty in a multidimensional space; selecting a portion of the realizations in a reduced dimensional space to preserve an amount of the uncertainty; optimizing an objective function based at least in part on the selected portion of the realizations; outputting parameter values for the optimized objective function; and generating at least a portion of a field operations plan based at least in part on at least a portion of the parameter values.
Abstract:
Methods may include creating a fracture set from a collection of intersecting fractures in a borehole image log recorded within a subterranean formation; classifying the fracture set into groups of fully and partially intersecting fractures; calculating one or more of the elongation ratio and the rotation angle of the partially intersecting fractures; determining a probability of full intersection of fractures from the fracture set; and determining a fracture size or a parametric distribution of fracture sizes from the fracture set using the calculated one or more of the elongation ratio and the rotation angle and the determined probability of full intersection of formation fractures within the borehole.