摘要:
A method of improving a geologic model of a subsurface region. One or more sets of parameter values are selected. Each parameter represents a geologic property. A cost and a gradient of the cost are obtained for each set. A geometric approximation of a parameter space defined by one or more formations is constructed. A response surface model is generated expressing the cost and gradient associated with each formation. When a finishing condition is not satisfied, at least one additional set is selected based at least in part on the response surface model associated with previously selected sets. Parts of the method are repeated using successively selected additional sets to update the approximation and the response surface model until the finishing condition is satisfied. Sets having a predetermined level of cost to a geologic model of the subsurface region and/or their associated predicted outcomes are outputted to update the geologic model.
摘要:
A method of improving a geologic model of a subsurface region. One or more sets of parameter values are selected. Each parameter represents a geologic property. A cost and a gradient of the cost are obtained for each set. A geometric approximation of a parameter space defined by one or more formations is constructed. A response surface model is generated expressing the cost and gradient associated with each formation. When a finishing condition is not satisfied, at least one additional set is selected based at least in part on the response surface model associated with previously selected sets. Parts of the method are repeated using successively selected additional sets to update the approximation and the response surface model until the finishing condition is satisfied. Sets having a predetermined level of cost to a geologic model of the subsurface region and/or their associated predicted outcomes are outputted to update the geologic model.
摘要:
A method for correlating predicted data describing a subsurface region with obtained data describing the subsurface region is provided. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. A likelihood measure that determines whether the predicted data is within an acceptable range of the obtained data is dynamically and/or interactively updated. The predicted data is compared with the obtained data using the likelihood measure and determining a sensitivity of the predicted data if the predicted data is not within an acceptable range of the obtained data as measured by the likelihood measure. Data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. The predicted data is outputted.
摘要:
A method for correlating predicted data describing a subsurface region with obtained data describing the subsurface region is provided. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. A likelihood measure that determines whether the predicted data is within an acceptable range of the obtained data is dynamically and/or interactively updated. The predicted data is compared with the obtained data using the likelihood measure and determining a sensitivity of the predicted data if the predicted data is not within an acceptable range of the obtained data as measured by the likelihood measure. Data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. The predicted data is outputted.
摘要:
A method for correlating data predicted by a processor physics-based geologic model to describe a subsurface region with obtained data describing the subsurface region. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. The predicted data is compared with the obtained data taking into account whether the obtained data or the predicted data represent a discontinuous event. A sensitivity of the predicted data is determined if the predicted data is not within an acceptable range of the obtained data. The data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. A representation of the subsurface region based on the data describing the subsequent state of the subsurface region is outputted.
摘要:
A method for correlating data predicted by a processor physics-based geologic model to describe a subsurface region with obtained data describing the subsurface region. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. The predicted data is compared with the obtained data taking into account whether the obtained data or the predicted data represent a discontinuous event. A sensitivity of the predicted data is determined if the predicted data is not within an acceptable range of the obtained data. The data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. A representation of the subsurface region based on the data describing the subsequent state of the subsurface region is outputted.
摘要:
A highly integrated foldable photovoltaic array comprising at least two PV modules integrated boards and at least one intermediate support structure, at least two fixed hinges on the intermediate support structure; respectively by a hinge connection between the PV modules integrated with the intermediate support plate structure; at least two PV modules integrated plate in contact with the ground; the area of all PV modules on the photovoltaic array is greater than 18 square meters. The present invention may integrate foundations, brackets, cables, photovoltaic modules, inverters, combiner box, optimizer, PV module power detecting device, plug socket, etc. The highly integrated foldable photovoltaic array reduce intermediate process, thus greatly improve the speed of installation, expand its use, reduce installation costs. Its low profile greatly reduce the wind resistance.
摘要:
A photovoltaic array with floating raft foundations comprising at least three photovoltaic integrated boards; the area of the photovoltaic array larger than 10 square meters; at least two photovoltaic integrated boards in contact with the ground. Length of at least three photovoltaic integrated boards is greater than three meters. The photovoltaic array with floating rafts foundations is a whole system, which can significantly reduce the use of the traditional foundation, save construction time, and reduce system cost.
摘要:
A photovoltaic array using photovoltaic module integrated boards comprises at least two cross beams and at least two photovoltaic module integrated boards; the angle between the longitudinal axes of the at least two beams is less than 15 degrees; the angle between the longitudinal axis of at least one beams and the longitudinal axis of the at least two photovoltaic module integrated boards is not less than 30 degrees and not more than 150 degrees; and the total area of all the photovoltaic module integrated boards supported by at least one group of the beams is more than 12 square meters. The present invention is designed to share beams, columns and foundations, thus saving materials and installation time and greatly reducing cost.
摘要:
A method of enhancing a geologic model of a subsurface region is provided. A bed topography of the subsurface region is obtained. The bed topography is defined by a plurality of cells with an elevation associated with each cell center. The bed topography is represented as a cell-centered piecewise constant representation based on the elevations associated with the cells. The bed topography is reconstructed to produce a spatially continuous surface. Flux and gravitational force-related source terms are calculated based on the reconstructed bed topography. Fluxes are calculated between at least two of the cells. Fluid flow, deposition of sediments onto the bed, and/or erosion of sediments from the bed are predicted using the fluxes and gravitational force-related source terms. The predictions are inputted into the geologic model to predict characteristics of the subsurface region, and the predicted characteristics are outputted.