Abstract:
Distributing information, including the steps of watermarking the digital content, distributing the digital content using a multi-source system, and partially fingerprinting digital content at each stage of moving information from a point of origin to the viewer. “Adaptation” of the digital content to the recipient includes maintaining the digital content in encrypted form at each such intermediate device, including decrypting the digital content with a key unique to both the device and the specific movie, selecting a portion of the watermark locations into which to embed information, embedding fingerprinting information into those locations sufficient to identify the recipient, and encrypting the fingerprinted digital content with a new such key.
Abstract:
Methods and systems for fingerprinting digital data are described. In the described embodiment, Direct Sequence Spread Spectrum (DSSS) technology is utilized. Unique fingerprinting words are defined where each includes at least one spread sequence. In one embodiment, a fingerprinting word comprises a plurality symbols, called “Γ symbols.” Each Γ symbol is composed of 2c-1 blocks, where c represents the number of colluders that are desired to be protected against. Each block contains d spread sequence chips. The fingerprinting words are assigned to a plurality of entities to which protected objects embedded with the fingerprinting words are to be distributed. To ascertain the identity of an entity that has altered its unique fingerprinting word, the relative weight of each block is computed in accordance with a defined function and blocks whose weights satisfy a predetermined relationship are “clipped” to a so-called working range. Each Γ-symbol of the altered fingerprinting word is then processed to produce a set of one or more colors that might be the subject of a collusion. Each Γ-symbol in the fingerprinting word for each entity is then evaluated against a corresponding produced set and the entity having the most overall Γ-symbol coincidences is incriminated.
Abstract:
Methods, systems, and apparatus are disclosed which enable flexible insertion of forensic watermarks into a digital content signal using a common customization function. The common customization function flexibly employs a range of different marking techniques that are applicable to a wide range of forensic marking schemes. These customization functions are also applicable to pre-processing and post-processing operations that may be necessary for enhancing the security and transparency of the embedded marks, as well as improving the computational efficiency of the marking process. The common customization function supports a well-defined set of operations specific to the task of forensic mark customization that can be carried out with a modest and preferably bounded effort on a wide range of devices. This is accomplished through the use of a generic transformation technique for use as a “customization” step for producing versions of content forensically marked with any of a multiplicity of mark messages.
Abstract:
Systems for fingerprinting digital data are described. In one embodiment, a system for detecting a fingerprinting word is configured to receive a protected object that has embedded therein a fingerprinting word that contains a plurality of spread spectrum chips that are arranged in individual blocks that define individual spread sequences. The system processes the protected object sufficient to identify an entity that is associated with the fingerprinting word and which comprises a potential colluder. The system is configured to process the protected object by calculating a weight for each block and restricting the weights of certain blocks to a predetermined value.
Abstract:
Systems and methods are described that desynchronize a video to be protected, thereby creating one or more digitally fingerprinted videos. In one implementation, a video to be protected is temporally desynchronized and spatially desynchronized. A fingerprinted copy of the video, as modified by the temporal and spatial desynchronizations, is created.
Abstract:
An implementation of a technology is described herein that facilitates rights enforcement of digital goods using watermarks. More particularly, it is a fingerprinting technology for protecting digital goods by detecting collusion as a malicious attack and identifying the participating colluders. If a digital pirate breaks one client and enables this client to avoid watermark detection, all content (both marked/protected an unmarked/free) can be played as unmarked only on that particular client. However, to enable other clients to play content as unmarked, the digital pirate needs to collude the extracted detection keys from many clients in order to create content that can evade watermark detection on all clients. The described implementation significantly improves collusion resistance through a fingerprinting mechanism that can identify the members of a malicious coalition even when their numbers are several orders of magnitude greater than what conventional collusion-protection schemes can accomplish. However, in this scenario each member of the malicious coalition leaves a fingerprint in every digital good from which the estimated watermark is subtracted. Thus, like a burglar without gloves, the digital pirate leaves her fingerprints only when she commits a crime. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
Abstract:
Techniques for watermarking structured data, such as map data are addressed. These techniques advantageously allow the detection of an unauthorized copy of the original data and to track the source of the unauthorized copy based upon a variety of opportunities to access the unauthorized copy. For example, in an Internet context, an unauthorized copy of a map may be provided to online customers so that they can make queries such as the distance between two driving destinations. Having such access, copies can be detected and traced to the original purchaser of the map.
Abstract:
A data processing apparatus is operable to identify one of a plurality of code words present in a watermarked version of a material item. The marked version is formed by combining each of a plurality of parts of a code word with one of a plurality of units from which the material item is comprised. The apparatus comprises a recovery processor operable to recover at least one part of the code word from a corresponding unit of the marked material item, and a correlator. The correlator is operable to generate for the marked material unit, a dependent correlation value for the part of the code word recovered from the material unit and the corresponding part of at least one of the re-generated code words from the set. A detector is operable to determine whether at least one of the code words is present in the marked material item from the dependent correlation value for the part of the code word exceeding a predetermined threshold. The data processor may detect the presence of the code word with improved probability, in particular when parts of the material have been corrupted.
Abstract:
A method and a system for embedding information in document data that include text written in a page description language. First, an analysis is made of the layout of the document data in which information is to be embedded. Then, based on the analysis of the layout, a sequence of locations is generated whereat the information is to be embedded. A page description of the text at a determined location is changed in accordance with the embedded information. As a result, the information is embedded in document data that include text written in a page description language. The sequence of locations is generated by producing a string of sequential pseudo-random numbers.
Abstract:
An encoding data processing apparatus generates at least one water marked version of an original item of material formed by introducing one of a predetermined set of code words into a copy of the original material item. The apparatus has a bandwidth adaptation processor operable to adapt a bandwidth of the code word to at least part of a bandwidth of the original material item, and an encoder operable to combine the bandwidth adapted code word with a copy of the original material item. The probability of correctly detecting a code word is improved by combining the code word with a part of the bandwidth of the material item. As a result, if the material is transformed in some way the code word may still be detected. For example, by embedding the code word into the low frequency temporal and spatial components of the material an improved resistance to temporal or spatial distortion is provided. As a result, an improvement in the probability of correctly detecting a code word is provided.