摘要:
The invention relates to exemplary methods, devices, and systems for heating an elongate silica cylinder to form a core-rod for optical fibers. An exemplary heating device includes an elongate cavity, an elongate liner bounding the cavity, a heating element in a heating element space surrounding the liner, the liner separating the heating element space from the cavity, and a gas flushing device for effecting a flow of gas at least through the heating element space. An exemplary method includes providing the elongate silica cylinder such that it extends through the cavity, heating the cylinder locally beyond its softening temperature, and effecting a flow of argon and nitrogen gas during the heating.
摘要:
A method for activating an inner surface of a hollow glass substrate tube for manufacturing an optical fiber preform including depositing a plurality of activation glass layers on the inner surface of the hollow substrate tube by a PCVD process, wherein a total thickness of the deposited activation glass layers is between 10 microns and 250 microns, and etching the deposited activation glass layers to remove at least 30% of the deposited activation glass layers.
摘要:
A rotary feed-through for mounting a rotating substrate tube in a lathe and providing a flow of process gas into the tube, said feed-through including a process gas supply line for providing a process gas into said substrate tube, a rotatable holder arranged for receiving and holding said substrate tube for rotating said substrate tube with respect to said process gas supply line, a rotary union provided between said rotatable holder and said process gas supply line for rotatably connecting said rotatable holder to said process gas supply line, a stationary housing connected to said process gas supply line and to said rotatable holder, therewith forming a closed cavity surrounding said rotary union, wherein said stationary housing further includes an auxiliary gas supply line for providing said closed cavity with an auxiliary gas.
摘要:
The invention concerns a method for characterizing mode group properties of multimodal light traveling through an optical component, comprising: providing a Mode Group Separating optical fiber in an optical path between a light source and said optical component; launching reference pulses of light with a wavelength λt from said light source through said Mode Group Separating optical fiber into said optical component at discrete intervals between a core center and a core radius of said fiber. The Mode Group Separating optical fiber is a multimode fiber with an α-profile graded index core with an α-value chosen such that said fiber satisfies the following criterion at the wavelength λt: Δτ · L Δ T REF > 4 where: Δτ is a time delay difference between consecutive mode groups; L is a length of said fiber; ΔTREF is a Full Width at Quarter Maximum of said reference pulses.
摘要:
The invention relates to an optical link comprising N optical fibers, with N≥2. Each optical fiber comprises an optical core and an optical cladding surrounding the optical core, the optical core having a single αi graded-index profile with αi≥1, and the optical core having a radius R1i, where i E [1; N] is an index designating said optical fiber. Said optical cladding comprises a region of depressed refractive index ntrenchi, called a trench, surrounding the optical core. According to embodiments of the invention, for all optical fibers in said link, said optical core radius R1i and said length Li are chosen such that R1i≥13.5 μm and so as to satisfy a criterion C of quality. Thus, the invention provides a few-mode optical fiber link, which allow guiding an increased number of LP modes as compared to prior art FMF links, while reaching low Differential Mode Group Delay.
摘要:
The present invention relates in a first aspect to a method for etching a primary preform or core rod. The present invention moreover relates in a second aspect to the etched primary preform thus obtained and moreover to a final preform and optical fibers obtained therefrom and to a method of preparing optical fibers therefrom.
摘要:
The invention concerns a method of characterizing a multimode optical fiber link comprising a light source and a multimode fiber, which comprises: a step (170) of characterizing the multimode fiber using a measurement of the Dispersion Modal Delay (DMD) and delivering fiber characteristic data; a step (171) of characterizing the light source by at least three source characteristic curves showing three parameters of the source as a function of a fiber radius r and obtained by a technique similar to the DMD measurement; a step (173) of computing an Effective Bandwidth (EB) of the link, comprising calculating (172) a transfer function using both the fiber characteristic data and each of said source characteristic curves.
摘要:
The invention concerns a multimode optical fiber, with a graded-index core co-doped with at least fluorine F and germanium GeO2 and a refractive index profile with at least two α-values. According to the invention, the concentration of fluorine F at the core center ([F]r=0) is between 0 and 3 wt % and the concentration of fluorine F at the core outer radius ([F]r=a) is between 0.5 wt % and 5.5 wt %, with [F]r=a−[F]r=>0.4 wt %. For wavelengths comprised between 850 nm and 1100 nm, said multimode optical fiber has an overfilled launch bandwidth (OFL-BW) greater than 3500 MHz·km and a calculated effective modal bandwidth (EMBc) greater than 4700 MHz·km over a continuous operating wavelength range greater than 150 nm.
摘要:
The invention concerns a single mode optical fibre having a core and a cladding, the core refractive index profile having a trapezoid-like shape. According to an aspect of the invention, the transition part of the trapezoid-like core refractive index profile is obtained by gradually changing a concentration of at least two dopants from a concentration in said centre part of said core to a concentration in a cladding part adjacent to said core.
摘要:
Disclosed is a novel central-tube cable with high-conductivity conductors. The novel central-tube cable according to the present invention yields a fiber optic cable with a smaller diameter than found in stranded-tube-cable designs.The central-tube cable features (i) a buffer tube containing optical conductors, (ii) radial strength members, and (iii) high-conductivity conductors coated with a dielectric material, such as polypropylene. The dielectric coating helps to prevent the high-conductivity conductors from shorting.