Abstract:
A semiconductor device includes a center semiconductor chip with a plurality of die pads, a plurality of lead frames, and a plurality of connecting components. The lead frame encapsulates the center semiconductor chip. Each connecting components establishes an electrical connection between the center semiconductor chip and the lead frame. At least one of the center semiconductor chip, the lead frame, and the connecting component forms an indicator.
Abstract:
A triode includes a semiconductor, a deep n-well, a p-well, an n+ doping region, and a doping region. The deep n-well is disposed adjacent to the semiconductor substrate. The p-well is included in the deep n-well and serves as a collector region of the triode. The n+ doping region serves as a base region of the triode. The p+ doping region serves as an emitter region of the triode. The deep n-well is coupled to the n+ doping region via at least one conducting channel.
Abstract translation:三极管包括半导体,深n阱,p阱,n +掺杂区和掺杂区。 深n阱邻近半导体衬底设置。 p阱包含在深n阱中,并用作三极管的集电极区域。 n +掺杂区域用作三极管的基极区域。 p +掺杂区域用作三极管的发射极区域。 深n阱经由至少一个导电沟道耦合到n +掺杂区域。
Abstract:
A display control method of a display device having a color engine. A mode setting interface is started which comprises an option for setting a working status of the color engine. When the option is operated, the color engine setting interface is started. A working status of the color engine is set via the color engine setting interface. When the color engine is in an active status, the color engine is controlled to process content to be displayed.
Abstract:
A display device includes a timing control circuit and a data driving circuit. The data driving circuit receives the first clock embedded training data from the timing control circuit, performs a first clock training to adjust a work frequency of the data driving circuit to be equal to the frequency of a first clock signal, and receives the first clock embedded image data from the timing control circuit. The data driving circuit also receives a second clock embedded training data from the timing control circuit, performs a second clock training to adjust a work frequency of the data driving circuit to be equal to the frequency of a second clock signal, and receives the second clock embedded image data from the timing control circuit. The frequency of the first clock signal is different from a frequency of the second clock signal.
Abstract:
An electronic device includes a first display unit for displaying static images, a second display unit for displaying dynamic images, a gate driver connected to the first display unit and the second display unit; a source driver connected to the first display unit and the second display unit; a storage unit for storing visual content; and a processor. The processor is operative to determine at least one feature of the visual content; and control the gate driver and the source driver to selectively enable at least one of the first display unit and the second display unit, based on the at least one determined feature, to display the visual content.
Abstract:
An ESD elimination device includes an ESD elimination circuit connected between a power line and a ground line and an ESD detection circuit. The ESD detection circuit includes a switch unit and a resistor, the switch unit and the resistor are electrically connected between the power line and the ground line. The switch unit is turned on when an ESD event occurs in the power line, a detecting voltage is generated across the resistor when the switch unit is turned on, the detecting voltage is used for triggering the ESD elimination circuit to eliminate the ESD surge current caused by the ESD event.
Abstract:
A source driver includes a first output buffer, a second output buffer, a first output switch, a second output switch, a third output switch, a fourth output switch, a first resistor, a second resistor, a third resistor, a fourth resistor, a first charge-sharing switch. The first and the second output buffer respectively enhances a first and a second pixel signal and respectively outputs a first and a second enhanced pixel signal to a display panel. The first output switch and the first resistor connected in series and the second output switch and the second resistor connected in series are connected in parallel between the first output buffer and the display panel. The third output switch and the third resistor connected in series and the fourth output switch and the fourth resistor connected in series are connected in parallel between the second output buffer and the display panel.
Abstract:
An exemplary fan driving system includes a driving device and a MOSFET group. The driving device includes a first adjustable resistor connected between its first voltage signal input terminal and ground, and a second adjustable resistor connected between its second voltage signal input terminal and ground. The MOSFET group includes two N-type MOSFETs and two P-type MOSFETs. The first terminal of the fan is connected to an anode of D1 and a cathode of D3. The second terminal of the fan is connected to an anode of D2 and a cathode of D4. Cathodes of the D1 and D2 are configured to connect a supply voltage. Anodes of the D3 and D4 both are grounded. The fan driving system can effectively discharge off the residual current in the coil of the fan at the moment of the MOSFET group being switched off.
Abstract:
An exemplary driving apparatus capable of generating a driving current, including: an analog input generating circuit, an analog input driving circuit, and an output circuit. The analog input generating circuit is electrically connected between a first voltage source and the ground and configured (i.e., structured and arranged) for supplying an adjustable analog signal. The analog input driving circuit is electrically connected between a second voltage source and the ground and configured for converting the analog signal into a pulsed signal. The output circuit is configured for converting the pulsed signal into a driving current as an output. The frequency of the pulsed signal can be adjusted via adjusting the analog signal and thereby varying the driving current. Thus the driving current can be adapted for the different target loads.
Abstract:
An exemplary lateral diffused metal oxide semiconductor device includes a first-type substrate, a gate oxide film disposed on the first-type substrate, a poly gate disposed on the gate oxide film, a first second-type slightly doped region formed in the first-type substrate and acting as a well, a first first-type highly doped region formed in the well and acting as a body, a first second-type highly doped region formed in the body and acting as a source, a second second-type highly doped region formed in the well and acting as a drain, a second first-type highly doped region formed in the body, and a first fist-type doped region formed in the body and is beneath the source.