摘要:
The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
摘要:
A prosthetic heart valve is disclosed that is deformable between collapsed, radially uncompressed, and target conditions. The prosthetic heart valve includes an inner frame, at least one leaflet, and a braided wire mesh arranged outside and coupled to the inner frame by a coupling portion. The braided wire mesh includes a body portion between the coupling portion and a flared portion. In the radially uncompressed condition, the prosthetic heart valve forms a cavity surrounded by the braided wire mesh and the inner frame. In the target condition, only a part of the length of the body portion is radially compressed along an axis extending from an upstream side to a downstream side. In the collapsed condition, the inner frame and braided wire mesh are radially collapsed over their entire length. In the radially uncompressed condition, the body portion is tubular and the braided wire mesh has a rotationally symmetric circumference.
摘要:
In some examples, a medical device system a thin film including at least one electrically conductive track extending between at least one electrode and at least one electrical contact, a first and second polymer layer; wherein, at a portion of the thin film between the at least one electrode and the at least one electrical contact, the first polymer layer and second polymer layer surround the at least one electrically conductive track; and at least one discrete ceramic member located between the first and second polymer layers at a portion of the thin film between the at least one electrode and the at least one electrical contact, wherein the at least one discrete ceramic member does not surround the at least one conductive track, and wherein the at least one discrete ceramic member is configured to increase adhesion between the first polymer layer and second polymer layer.
摘要:
The present invention regards a probe for deep brain stimulation (DBS), with high overall impedance, but low overall resistance. This is achieved since the probe comprises a structure comprising at least two interconnected spirals, wherein said two spirals have different direction of rotation. A system for deep brain stimulation comprising the probe, a power source and an electrode is also disclosed.
摘要:
A method and control system for determining and applying stimulation settings for a brain stimulation probe (10, 12) is provided. The brain stimulation probe (10, 12) comprises a plurality of stimulation electrodes (11). The method comprises for multiple stimulation electrodes (11) of the plurality of stimulation electrodes (11): applying a test current and determining a corresponding patient response, determining a volume of influence based (32, 52, 71, 91) on the test current and a position of the stimulation electrode (11), combining the volume of influence (32, 52, 71, 91) and the corresponding patient response with generalized anatomic knowledge of stimulation induced behavior for associating the volume of influence (32, 52, 71, 91) to an anatomic structure (33, 43, 53), and determining an intersection (41, 51) of the volume of influence (32, 52, 71, 91) and the associated anatomic structure (33, 43, 53). Then, based on the determined intersections (41, 51) an optimal stimulation volume and corresponding stimulation settings for the brain stimulation probe (10, 12) are determined.
摘要:
The invention relates a system (302) for medical stimulation. The system (302) comprises an implantable probe (304) bifurcated into a primary branch (306) and a secondary branch (308) at a bifurcation (310), wherein the probe is provided at its distal end (112, 312) with an electrode (114) for delivering electrical stimulation to tissue. Herein, the primary branch (306) is configured for at least temporarily mechanically co-operating with a guide wire (316) configured for guiding the probe (304) into said tissue whereas the secondary branch (308) is configured for electrically connecting said electrode to a device for generating the electrical stimulation.
摘要:
A method is provided for determining a threshold (81, 82) for spike (12) detection in an electrophysiological signal (11). The method comprises a step of determining an estimated envelope (31) of the electrophysiological signal (11), a step of, based on the estimated envelope (31), determining an estimated Gaussian noise, a step of determining a distribution (51) of instantaneous amplitudes of the estimated Gaussian noise, a step of determining a mode (61) of the distribution (51) of instantaneous amplitudes, and determining the threshold (81, 82) based on the mode (61) of the distribution (51) of instantaneous amplitudes.
摘要:
A lead for brain applications, comprises at least one distal section and at least one electrode, whereby the at least one electrode is arranged in the distal section and whereby the at least one electrode is connected directly and/or indirectly with at least one first connecting trace and at least one second connecting trace. Furthermore, in some examples, the lead relates to a deep brain stimulation (DBS) system.
摘要:
In one example, a medical device system for at least one of delivery of electrical stimulation pulses or sensing of physiological signals, the system including an elongated carrier; and a thin film wound around the elongated carrier, wherein the thin film includes a plurality of electrical contacts, a plurality of electrodes located distal to the plurality of electrical contacts, and a plurality of conducting tracks, each of the plurality of conducting tracks providing an electrical connection between at least one of the plurality of electrodes and one of the plurality of electrical contacts, and wherein the thin film is wound around the elongated carrier from the distal end of the elongated film to the proximal end of the elongated thin film.
摘要:
The present invention relates to an electronic system for a system for neural applications, comprising at least one first connector element and at least one second connector element, the first connector element being configured such that the electronic system is directly and/or indirectly connectable or connected to a controller which is at least configured to supply and/or provide and/or measure at least one voltage and/or at least one current and/or at least one voltage waveform and/or at least one current waveform especially via one or more stimulation outputs and/or recording inputs, the second connector element being configured such that the electronic system is directly and/or indirectly connectable or connected to a lead for neural stimulation and/or recording, wherein the electronic system comprises at least one leakage current detection means configured such that a leakage current, especially a leakage current within and/or around the system for neural applications is detectable.