摘要:
A GPS precision approach and landing system for aircraft employs a fixed ground facility and a single satellite navigation receiver on board the aircraft. The fixed ground facility includes a reference receiver that measures differential corrections to the satellite code and carrier measurements and a pseudolite that is employed to transmit these corrections to a broadband GPS receiver on board the aircraft and to provide an additional code and carrier measurement to assist in the navigation solution. The pseudolite signal is broadcast at a frequency offset from the L1 GPS frequency in order to prevent interference with the satellite navigation system. The broadband GPS receiver on board the aircraft is capable of making phase coherent measurements from the GPS satellites, the pseudolite signal, and the GLONASS satellites. These phase coherent measurements are combined to form a precise differential carrier ranging (DCR) solution that is used to provide three-dimensional position guidance of the aircraft throughout a precision approach and landing procedure.
摘要:
A low cost tracking system employing satellites of the global positioning system (GPS) is suitable for applications involving radiosondes, sonobuoys, and other objects. The tracking system includes a sensor mounted on each object which digitally samples the GPS satellite signals and records them in a data buffer. The digital samples are then transmitted, at a rate lower than that at which the GPS satellite signals were sampled, over a data telemetry link, interleaved with other telemetry data from the object. The GPS data is processed in a data processing workstation where the position and velocity of the sensor, at the time the data was sampled, is computed. The data buffer in the sensor is periodically refreshed, and the workstation periodically computes the new position and velocity of the sensor. Differential corrections are also provided at the workstation to aid in signal acquisition and to increase the precision of the position fix.
摘要:
A tracking system employing global positioning system (GPS) satellites provides extremely accurate position, velocity, and time information for vehicles or any other animate or inanimate object within any mobile radio communication system or information system, including those operating in high rise urban areas. The tracking system includes a sensor mounted on each object, a communication link, a workstation, and a GPS reference receiver. The sensor operates autonomously following initialization by an external network management facility to sequence through the visible GPS satellites, making pseudo range and delta range or time difference and frequency difference measurements. No navigation functions are performed by the sensor, thereby permitting significant reductions in the cost thereof. The raw satellite measurements, with relevant timing and status information, are provided to the communication link to be relayed periodically back to the workstation. Differential corrections may also be provided at the workstation to increase the accuracy of the object location determination. In normal operation, three satellite measurements are required to compute the location of the object, but for a short time period a minimum of two satellite measurements are acceptable with time, altitude, and map aiding information being provided by the workstation.