Abstract:
A minimum quantity lubrication (MQL) system includes a controller, a lubricant module coupled to a tool spindle of a machining apparatus, and a pneumatic module coupled to the spindle. The lubricant module is configured to supply lubricant at pressure to the tool, as controlled by the controller. Likewise, the pneumatic module is configured to supply pressurized air to the tool, as controlled by the controller. The controller is configured to direct the lubricant module to supply lubricant prior to the controller receiving a START signal from a machine tool controller. Optionally, the lubricant pressure level is predetermined based on known characteristics of the tool that is coupled to the spindle. Optionally, the START signal is anticipated by referring to a signature/profile of the operational steps of a machining process where a timeline or time table of lubrication request intervals are identified.
Abstract:
A liquid delivery system including a spray nozzle that includes a spray tip. The spray nozzle receives liquid via a liquid supply line. The spray tip of the spray nozzle generates an atomized liquid spray output when the liquid flowing through the spray nozzle passes through the spray tip. The spray nozzle includes a fluid control valve and a flow meter. The fluid control valve controls a flow rate of the liquid dispensed by the spray nozzle. The flow meter determines a flow rate of the liquid dispensed by the spray nozzle. The spray nozzle also includes a housing configured to retain and support the fluid control valve and the flow meter. The liquid delivery system includes a controller that provides feedback and control of the spray nozzle by receiving a flow rate signal from the flow meter and outputting a control signal to the fluid control valve.
Abstract:
A lubricant delivery system and method includes a valve manifold, an electronic controller, and a pressure sensor for determining whether there is adequate lubricant flow in the system. The valve manifold receives lubricant from a pressurized source. The valve manifold includes a plurality of valves configured to control the flow of lubricant to respective applicators. The electronic controller controls the opening and closing of the valves. The pressure sensor measures lubricant pressure in the valve manifold, and outputs a signal to the electronic controller. The signal correlates to a lubricant pressure value in the valve manifold. The electronic controller uses the lubricant pressure values to derive an indication of lubricant flow (via the valves) to the applicators.
Abstract:
A lubricant delivery system includes a valve manifold, an electronic controller, and a pressure sensor for determining whether there is adequate lubricant flow in the system. The valve manifold receives lubricant from a pressurized source. The valve manifold includes a plurality of valves configured to control the flow of lubricant to respective applicators. The electronic controller controls the opening and closing of the valves. The pressure sensor measures lubricant pressure in the valve manifold, and outputs a signal to the electronic controller. The signal correlates to a lubricant pressure value in the valve manifold. The electronic controller uses the lubricant pressure values to derive an indication of lubricant flow (via the valves) to the applicators.
Abstract:
A minimum quantity lubrication system for accurately measuring and controlling a volume and pressure of a lubricating fluid provided to a machining tool during minimum quantity lubrication machining operations. The minimum quantity lubrication system can further include measuring and controlling a volume and pressure of air provided during machining such that atomization of the lubricating fluid with the air can be controlled. Use of a continuous volumetric flow pump provides a continuous flow of lubricating fluid to the tool during machining operations.
Abstract:
A system provides for the delivery of lubricant or coolant to multiple machines simultaneously. The system comprises a single source of fluid where the single source is fluidly connected to a controller. The controller has a plurality of fluid connections to workstations. At least one fluid conduit extends between the controller and each workstation. Each workstation has means for applying the lubricant or coolant to a predetermined location. The locations are tools, workpieces, or drive components such as motors, bearings, gears, and the like. The lubricant or coolant is applied by an applicator, stream nozzle, or spray nozzle. The scrap material from the processing application is in condition for resale, instead of disposal.
Abstract:
A lubricant delivery system includes a valve manifold, an electronic controller, and a pressure sensor for determining whether there is adequate lubricant flow in the system. The valve manifold receives lubricant from a pressurized source. The valve manifold includes a plurality of valves configured to control the flow of lubricant to respective applicators. The electronic controller controls the opening and closing of the valves. The pressure sensor measures lubricant pressure in the valve manifold, and outputs a signal to the electronic controller. The signal correlates to a lubricant pressure value in the valve manifold. The electronic controller uses the lubricant pressure values to derive an indication of lubricant flow (via the valves) to the applicators.
Abstract:
A MQL system for accurately measuring and controlling a volume and pressure of a lubricating fluid provided to a machining tool during minimum quantity lubrication machining operations. The MQL system can further include measuring and controlling a volume and pressure of air provided during machining such that atomization of the lubricating fluid with the air can be controlled. Use of a continuous volumetric flow pump provides a continuous flow of lubricating fluid to the tool during machining operations.