Abstract:
In one exemplary aspect, an edge-gateway multipath method includes the step of providing an edge device in a local network communicatively coupled with a cloud-computing service in a cloud-computing network. A set of wide area network (WAN) links connected to the edge device are automatically detected. The WAN links are automatically measured without the need for an external router. The edge device is communicatively coupled with a central configuration point in the cloud-computing network. The method further includes the step of downloading, from the central configuration point, an enterprise-specific configuration data into the edge device. The enterprise-specific configuration data includes the gateway information. The edge device is communicatively coupled with a gateway in the cloud-computing network. The communicatively coupling of the edge device with the gateway includes a multipath (MP) protocol.
Abstract:
A technique for effecting electronic commerce using a data network is described. The data network includes a plurality of subsystems which, together, form an integrated system for receiving customer orders for selected items via a data network, fulfilling the customer orders, and delivering the ordered products to the customers. Moreover, according to a specific embodiment, the integrated nature of the system architecture of the present invention allows the on-line merchant to provide a guarantee to the customer that the ordered items will be available to be delivered to the customer at the specified delivery date, time, and location.
Abstract:
Techniques for implementing a load balanced server system are described which may be used for effecting electronic commerce over a data network. The system comprises a load balancing system and a plurality of servers in communication with the load balancing system. Each of the plurality of servers may include a respective data cache for storing state information relating to client session transactions conducted between the server and a particular client. The load balancing system can be configured to select, using a load balancing protocol, an available first server from the plurality of servers to process an initial packet received from a source device such as, for example, a client machine of a customer. The load balancing system can also configured to route subsequent packets received from the source device to the first server. Before generating its response, the first server may verify that the state information relating to a specific client session stored in the data cache is up-to-date. If the first server determines that the state information stored in the data cache is not up-to-date, then the first server may be configured to retrieve the desired up-to-date state information from a database which is configured to store all state information relating to client sessions which have been initiated with the server system.
Abstract:
A technique is disclosed for generating formatted information for display on a computing device. The computing device may be configured to include at least one interface for communicating with a server computing device. A request is sent from the computing device to the server system. According to one embodiment, the request may correspond to an HTTP request for information relating to a specific HTML page or web page. A response is then received from the server system. According to one embodiment, the response includes response information comprising embedded instructions and data. The embedded instructions may include instructions for using the data to generate formatted markup information for display on the computing device. The embedded instructions are then executed on the data to thereby generate formatted markup information for display on the computing device. According to a specific embodiment, the formatted markup information corresponds to HTML data to be rendered for display on the computing device.
Abstract:
A technique for implementing a load balanced server farm system is described which may be used for effecting electronic commerce over a data network. The system comprises a load balancing system and a plurality of servers in communication with the load balancing system. Each of the plurality of servers may include a respective data cache for storing state information relating to client session transactions conducted between the server and a particular client. The load balancing system is configured to select, using a load balancing protocol, an available first server from the plurality of servers to process an initial packet received from a source device such as, for example, a client machine of a customer. The load balancing system is also configured to route subsequent packets received from the source device to the first server. In this way, a “stickiness” scheme may be implemented in the server farm system whereby, once an electronic commerce session has been initiated between the first server and the source device, the first server may handle all subsequent requests from the source device in order to make optimal use of the state data stored in the first server's data cache. Before generating its response, the first server may verify that the state information relating to a specific client session stored in the data cache is up-to-date. If the first server determines that the state information stored in the data cache is not up-to-date, then the first server may be configured to retrieve the desired up-to-date state information from a database which is configured to store all state information relating to client sessions which have been initiated with the server farm system.
Abstract:
A technique for effecting electronic commerce using a data network is described. The data network includes a plurality of subsystems which, together, form an integrated system for receiving customer orders for selected items via a data network, fulfilling the customer orders, and delivering the ordered products to the customers. Moreover, according to a specific embodiment, the integrated nature of the system architecture of the present invention allows the on-line merchant to provide a guarantee to the customer that the ordered items will be available to be delivered to the customer at the specified delivery date, time, and location.
Abstract:
Different techniques are disclosed for generating formatted information for display on a computing device. The computing device may be configured to include at least one interface for communicating with a server system. The computing device sends a request to the server system. According to one embodiment, the request may correspond to an HTTP request for information relating to a specific HTML page or web page. A response is then received from the server system. The response can include response information having instructions and data. The instructions may include instructions for using the data to generate formatted markup information for display on the computing device. The instructions then can be executed on the data to generate formatted markup information for display on the computing device. The formatted markup information can correspond to HTML data to be rendered for display on the computing device.
Abstract:
In one aspect, a computerized method of an application routing service includes the step of using a deep-packet inspection (DPI) technique on a first network flow to identify an application. The method includes the step of storing an Internet-protocol (IP) address and a port number used by the application and an identity of the application in a database. The method includes the step of detecting a second network flow. The method includes the step of identifying the IP address and the port number of the application in the second network flow. The method includes the step of looking up the IP address and the port number in the database. The method includes the step of identifying the application based on the IP address and the port number.
Abstract:
A technique is disclosed for generating formatted information for display on a computing device. The computing device may be configured to include at least one interface for communicating with a server computing device. A request is sent from the computing device to the server system. According to one embodiment, the request may correspond to an HTTP request for information relating to a specific HTML page or web page. A response is then received from the server system. According to one embodiment, the response includes response information comprising embedded instructions and data. The embedded instructions may include instructions for using the data to generate formatted markup information for display on the computing device. The embedded instructions are then executed on the data to thereby generate formatted markup information for display on the computing device. According to a specific embodiment, the formatted markup information corresponds to HTML data to be rendered for display on the computing device.
Abstract:
Techniques for implementing a load balanced server system are described which may be used for effecting electronic commerce over a data network. The system comprises a load balancing system and a plurality of servers in communication with the load balancing system. Each of the plurality of servers may include a respective data cache for storing state information relating to client session transactions conducted between the server and a particular client. The load balancing system can be configured to select, using a load balancing protocol, an available first server from the plurality of servers to process an initial packet received from a source device such as, for example, a client machine of a customer. The load balancing system can also configured to route subsequent packets received from the source device to the first server. Before generating its response, the first server may verify that the state information relating to a specific client session stored in the data cache is up-to-date. If the first server determines that the state information stored in the data cache is not up-to-date, then the first server may be configured to retrieve the desired up-to-date state information from a database which is configured to store all state information relating to client sessions which have been initiated with the server system.