Methods for analysis of large sets of multiparameter data
    1.
    发明授权
    Methods for analysis of large sets of multiparameter data 失效
    大量多参数数据分析方法

    公开(公告)号:US06178382B1

    公开(公告)日:2001-01-23

    申请号:US09103284

    申请日:1998-06-23

    IPC分类号: G01N3350

    CPC分类号: G06T11/206 G01N33/50

    摘要: This invention relates a series of methods for the visual representation and subsequent application of analyses on complex data sets. In particular, this invention is useful for the analysis of multiple sample sets that share common features, for which similar types of analyses are desired. Three concepts are embodied to aid in this analysis: “Functional equivalence by Algorithmic Polymorphism” (FEAP), in which an analysis algorithm is abstracted through the use of an associated name; a genealogical metaphor for the representation of successive or parallel analysis steps, in which “families” of analyses can be easily copied between different sample data sets; and batch analysis through the creation of multi-sample analysis surrogates (MSAS), which are groups of samples wherein analyses applied to an MSAS is then applied to every sample within the MSAS group. This invention has particular utility in the analysis of data derived from flow cytometers, the analysis of complex demographic data, and other similar data sets.

    摘要翻译: 本发明涉及用于在复杂数据集上的分析的视觉表示和后续应用的一系列方法。 特别地,本发明对于分析共享共同特征的多个样本集是有用的,对于类似的分析类型是期望的。 三个概念被体现为帮助分析:“通过算法多态性的功能等同”(FEAP),其中分析算法通过使用关联名称被抽象; 用于表示连续或平行分析步骤的系谱比喻,其中分析的“家庭”可以容易地在不同样本数据集之间复制; 并通过创建多样本分析代理(MSAS)进行批量分析,这些代码是MSAS组中每个样本的样本组,其中分析应用于MSAS。 本发明在分析流式细胞仪获得的数据,复杂人口统计学数据分析和其他类似数据集方面具有特别的实用价值。