摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation may have a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation having a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation having a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A wind turbine foundation having a central pedestal, a bottom support slab, and a plurality of prefabricated radial reinforcing ribs. The pedestal and support slab are poured in situ at the site. When the concrete cures the support slab is united to the prefabricated ribs and the ribs are also united to the pedestal. The result is a continuous monolithic foundation wherein loads are carried across the structure vertically and laterally through the continuous structure by doweled and spliced reinforcing steel bars which are integrally cast into the pedestal, ribs and support slab. The slab thus behaves structurally as a continuous slab reducing deflections, improving fatigue conditions and increasing the stiffness of the foundation as well as allowing for the benefits of an economical design.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation having a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab with a stiffened perimeter, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation having a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A foundation having a central vertical pedestal, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal and ribs forming a continuous monolithic structure. An anchoring system under the ribs with anchoring the foundation to the ground by anchoring elements connected to rock anchors, soil anchors, piles or the like. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation having a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower having a central vertical pedestal, a substantially horizontal continuous bottom support slab with a stiffened perimeter, a plurality of radial reinforcing ribs extending radially outwardly from the pedestal and a three-dimensional network 500 of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity that is intended to reduces stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.
摘要:
A fatigue resistant gravity based spread footing under heavy multi-axial cyclical loading of a wind tower. The foundation having a central vertical pedestal, a substantially horizontal continuous bottom support slab, a plurality of radial reinforcing ribs extending radially outward from the pedestal. The pedestal, ribs and slab forming a continuous monolithic structure. The foundation may have a three-dimensional network of post-tensioning elements that keep the structural elements under heavy multi-axial post compression with a specific eccentricity intended to reduce stress amplitudes and deflections and allows the foundation to have a desirable combination of high stiffness and superior fatigue resistance. The foundation design reduces the weight and volume of materials used, reduces cost, and improves heat dissipation conditions during construction by having a small ratio of concrete mass to surface area thus eliminating the risk of thermal cracking due to heat of hydration.