Abstract:
An apparatus and method for distributing and activating a new security parameter in a computer network in a non-disruptive manner includes transmitting a new security parameter to the an element in the network, instructing the element to place the new security element in a pending database of the element and activating the new security parameter. The present invention also determines possible conflicts in the computer network.
Abstract:
The present invention relates to a process for forming glass-ceramic tiles. Spent aluminum potliner containing carbonaceous material, fluorine, and glass forming materials is oxidized under conditions effective to combust the carbonaceous material and volatilize partially the fluorine in the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing fluorine.
Abstract:
A method and system for bootstrapping a processor from a volatile memory device connected to the processor is disclosed. The first processor is bootstrapped from flash device. The reset lines of the second processor are asserted. The boot code for the second processor is loaded from the flash device into the volatile memory device. The reset lines of the second processor are de-asserted, wherein the processor then boots from the boot code stored in the volatile memory device. The same boot-strapping method can be extended to multi-drop systems where number of secondary processor can be more than one. A switchable means for the second processor to boot from volatile memory as described or from flash memory. A method also describes a mechanism to boot from synchronous volatile memory devices.
Abstract:
The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.
Abstract:
The present invention relates to a process for nuclear waste disposal. In it, a glass forming mixture including an aqueous solution of one or more metal alkoxides, alcohol, and solubilized, low level radioactive waste having a pH effective to hydrolyze the one or more metal alkoxides is formed. The one or more metal alkoxides in the glass forming mixture are converted to a network of corresponding one or more metal oxides. A gel is then formed from the glass forming mixture containing the network of one or more metal oxides. The gel is dried and sintered under conditions effective to form a densified glass.
Abstract:
A substantially dehydroxylated glass is formed by impregnating a dry porous silica gel with a nitrogen-containing organic compound in an organic solvent capable of solubilizing that compound. The impregnated gel is then sintered in a non-oxidizing atmosphere to form a substantially dehydroxylated, fully-densified silica glass. The gel is typically formed by a sol-gel process. The nitrogen-containing organic compound can be guanidine compounds, urea, or mixtures thereof.
Abstract:
A system and method is presented for defining power-up sequences and menus through a macro file. The macro file is compiled into a data construct that is stored on a computing device. On the powering up of the computing device, a first algorithm reads and executes a series of diagnostic tests from the stored data construct. On the failure of a critical diagnostic test, a second algorithm reads and presents a menu structure found in the stored data construct. The data construct can be recompiled and re-stored on the computing device so as to alter the power-up sequence and the menu structure without altering the first or second algorithm.