Abstract:
A receiver apparatus and method are provided blind amplitude estimation for a received complex signal, wherein the complex signal is analyzed to determine first and second order statistics of real part and imaginary part of the complex signal. Based on a predetermined non-linear function, amplitude scaling information is pre-calculated and used to derive a desired amplitude scaling information for said determined first and second order statistics. Thereby, a low complexity method for blind amplitude estimation for unknown data symbols distorted by an unknown amount of noise can be provided.
Abstract:
Modulator system (1) comprising modulators (2, 3, 4) for modulating input signals (A) according to different modulation schemes (8PSK, GMSK) cause discontinuities in the output signals (F) when switching between the schemes. By providing the modulator systems (1) with compensators (13, 22-26) for compensating amplitudes/phases of the output signals (F) of the modulator system (1) for discontinuities, these discontinuities resulting from modulation scheme changes are reduced to a large extent. This may be done before/after the pulse shapers (11, 21). The compensators (13, 22-26) comprise multipliers for multiplying pulse shaped modulated signals with complex valued waveforms (E), or for multiplying modulated signals with waveforms (S, T), or for multiplying complex valued signals (B, C, D) with complex valued phase offsets (X, Y, Z), which complex valued signals (B, C, D) are to be multiplied with mapped input signals. As a result, the output signals (F) and/or power amplifiers (33) situated after the modulator system (1) no longer need to be ramped down.
Abstract:
In a transmitting/receiving concept a redundancy-adding encoder is used in order to obtain two data streams for different transmitters. In the receiver, the receiving signal is sampled by a first sampler synchronous to the first transmitter and is output by a second sampler synchronous to the second transmitter in order to obtain a first and a second receiving signal which are fed to a trellis decoder to obtain a decoded first and second receiving subgroup of code units which are again fed to a calculating means in order to calculate the interference signals which are then combined with the corresponding receiving signals for an interference reduction. The iterative concept enables an interference reduction for receiving signal generated by two spatially separated transmitters. The receiver concept shows a quick convergence and thus enables the two transmitters to transmit in the same frequency band.
Abstract:
The present invention relates to a method and apparatus for measuring a frequency or a phase of a measuring signal, wherein the frequency (fg) or the phase (φg) are estimated by approximating the relationship between a collecting clock (c) and a gating clock (g) based on a non-linear step-shaped function. Thereby, the estimation error can be improved with almost negligible complexity increase in signal processing.
Abstract:
A transmitter apparatus (1) comprises a digital modulator (2), wherein the modulator is adapted to output a digital in-phase signal and a digital quadrature signal. The digital in-phase signal is converted to an analog in-phase signal and further processed in a path (31) for the in-phase signal, and a digital quadrature signal is converted in an analog quadrature signal and further processed in a path (34) for the quadrature signal. Thereby, an amplitude and delay mismatch in the path can occur. With the transmitter apparatus (1) of the invention the amplitude and delay mismatch can be measured. Further, an amplitude correction unit (43) is adapted for correcting the amplitude mismatch and a delay unit (3) is adapted to correct the delay mismatch. Further refinements of the amplitude and delay mismatch can be made with one or more predetermined test signals generated by a test signal generating unit (30).
Abstract:
The present invention provides novel methods of treating pain comprising administering to a mammal in need of such treatment an effective analgesic amount of a peptide having the amino acid sequence of SEQ ID. NO.: 1 or SEQ ID NO: 2. The invention further provides a purified peptide having the amino acid sequence of SEQ ID NO: 1. The peptides of SEQ ID NO.:1 and SEQ ID NO.: 2 can also be used in methods for identifying compounds having analgesia-inducing activity.
Abstract translation:本发明提供了治疗疼痛的新方法,包括对需要这种治疗的哺乳动物施用有效的止痛剂量的具有SEQ ID NO:1的氨基酸序列的肽。 本发明还提供具有SEQ ID NO:1的氨基酸序列的纯化肽。也可以使用SEQ ID NO:1和SEQ ID NO:2的肽 在鉴定具有止痛诱导活性的化合物的方法中。
Abstract:
The invention provides a novel peptide isolated from the venom of the spider Grammostola spatulata which peptide has antiarrhthymic activity. The invention also provides methods of treating arrhthymia comprising administering to a patient in need of such treatment an effective amount of the peptide. The invention further provides pharmaceutical compositions and methods of mediating hypotonic cell swelling induced calcium increase in cells.
Abstract:
A signal scaling device (D), for a transmission path of a wireless communication equipment, comprises a processing means (PM) adapted to receive a phase and/or amplitude modulated signal (I/Q) to transmit, and arranged to multiply said phase and/or amplitude modulated signal with a chosen complex gain in order to output said phase and/or amplitude modulated signal with a chosen scaled amplitude and a chosen phase offset.
Abstract:
A transmitter device is provided which comprises a digital part (DP) and an analog part (AP). The transmitter device furthermore comprises a digital modulator (DM) in the digital part (DP) for receiving bits (MB) and for digitally modulating the receiving bits (MB). A first (IDAC; RDAC) and second digital-to-analog converter (QDAC; ODAC) are provided. The transmitter device furthermore comprises at least one filter unit (H1; HQ; H1) which is arranged in the digital part (DP) and which is coupled between the first and/or second digital-to-analog converter (IDAC; QDAC) and the digital modulator (DM). A table unit (TU) is coupled to the at least one filter unit (H1; HQ) and is used to store pre-defined compensation filter values for the at least one filter unit (H1; HQ) which are required to compensate different delay mismatches in the analog part (AP) of the transmitter device. The filter values of the at least one filter unit (H1; HQ) are set to those compensation filter values as stored in the table unit (TU) which correspond to a determined delay mismatch.
Abstract:
A signal scaling device (D), for a transmission path of a wireless communication equipment, comprises a processing means (PM) adapted to receive a phase and/or amplitude modulated signal (I/Q) to transmit, and arranged to multiply said phase and/or amplitude modulated signal with a chosen complex gain in order to output said phase and/or amplitude modulated signal with a chosen scaled amplitude and a chosen phase offset.