Abstract:
A method of verifying the integrity of an arithmetic logic unit (ALU) of a control module includes inputting a first test value into one of a plurality of registers of the ALU and inputting a second test value into remaining registers of the plurality of registers. A first set of operations is performed between the one of the plurality of registers and each of the remaining registers to produce a first set of results. A fault is indicated when one of the first set of results varies from a first predetermined result.
Abstract:
A transmission control system for a vehicle includes a first module that generates a first modified signal based on a first position of a driver input device and a second module that receives the first modified signal from the first module. The second module generates a second modified signal based on a second position of the driver input device and regulates operation of a transmission of the vehicle based on the first and second modified signals.
Abstract:
An engine start security control system for a vehicle having a transmission that is driven by an engine includes a first module that generates a first engine start flag based on an internal mode switch (IMS) signal and a second module that generates a second engine start flag based on a modified IMS signal. A third module selectively generates an engine start allow signal based on the first and second engine start flags.
Abstract:
A transmission control system for a vehicle includes a first module that generates a first modified signal based on a first position of a driver input device and a second module that receives the first modified signal from the first module. The second module generates a second modified signal based on a second position of the driver input device and regulates operation of a transmission of the vehicle based on the first and second modified signals.
Abstract:
An engine start security control system for a vehicle having a transmission that is driven by an engine includes a first module that generates a first engine start flag based on an internal mode switch (IMS) signal and a second module that generates a second engine start flag based on a modified IMS signal. A third module selectively generates an engine start allow signal based on the first and second engine start flags.
Abstract:
A method is provided for controlling an output/input speed ratio of a continuously variable transmission (CVT) plant including primary and secondary pulleys actuated by primary and secondary pressures (Pp,Ps,), respectively, which generate forces to move the pulleys and adjust a corresponding belt, thereby adjusting the output/input ratio. The method includes calculating a desired force ratio for the CVT plant. Desired primary and secondary pressures (PP,PS) are then determined based, in part, upon the calculated desired force ratio, and the desired PS and PP signals are sent to the CVT plant to control operation of the CVT plant. An actual speed ratio is calculated based on measurements of input and output speed from the CVT plant. An error signal is generated based upon the measured actual speed ratio for use in calculating a next sample time desired force ratio which is then used to calculate desired PS and PP signals to be sent as inputs to the CVT plant, thereby using the desired force ratio as the controlled variable in controlling the output/input speed ratio of the CVT plant.
Abstract:
A method of verifying the integrity of an arithmetic logic unit (ALU) of a control module includes inputting a first test value into one of a plurality of registers of the ALU and inputting a second test value into remaining registers of the plurality of registers. A first set of operations is performed between the one of the plurality of registers and each of the remaining registers to produce a first set of results. A fault is indicated when one of the first set of results varies from a first predetermined result.