Abstract:
The invention relates to an arrangement for reading off predetermined positions of a gear lever (11). A sensor arrangement (1) with a first sensor component (10) moves with the gear lever (11) and a plurality of second sensor components (S21-S25) interacts with the first sensor component (10), wherein in each of the predetermined positions of the gear lever (11), the first sensor component (10) interacts with at least one second sensor component (S21-S25). A position determination unit (30) compares the current sensor output values with stored sensor output values in a table (40). When a faulty condition is detected in one of the sensor components (S21-S25), the stored sensor output values for the faulty sensor component are updated with the faulty output value of the faulty sensor component in the table (40) of expected sensor output values.
Abstract:
A pressure sensor rationality diagnostic for a dual clutch transmission includes a series of sensor tests. One such test includes charging an oil accumulator to a maximum pressure and storing the maximum pressure value. After performing a discharge pressure event and measuring the pressure value, the difference between the max pressure value and the discharge pressure value is calculated to determine if the difference is less than a predetermined threshold. If the difference is less than the predetermined threshold then at least one remedial action is performed which may include a driver alert or default charging mode. Additionally, similar sensor tests are performed to determine if faults exists and, if true, at least one remedial action is performed.
Abstract:
A transmission includes an input shaft coupled to a prime mover, a countershaft, main shaft, and an output shaft, with gears between the countershaft and the main shaft. A shift actuator selectively couples the input shaft to the main shaft by rotatably coupling gears between the countershaft and the main shaft. The shift actuator is mounted on an exterior wall of a housing including the countershaft and the main shaft. An integrated actuator housing includes a single external power access for the shift actuator. A controller interprets a shaft displacement angle, determines if the transmission is in an imminent zero or zero torque region, and performs a transmission operation in response to the transmission in the imminent zero or zero torque region.
Abstract:
A control device for a continuously variable transmission includes a wheel speed difference sensing section configured to sense a wheel speed difference between the driving wheel and the driven wheel from a detection value of the first rotation speed sensor and a detection value of the second rotation speed sensor; and a clamping force increasing section configured to increase a clamping force for sandwiching a belt of the continuously variable transmission by a pulley when the wheel speed difference becomes equal to or greater than a first predetermined value, relative to a case where the wheel speed difference is smaller than the first predetermined value.
Abstract:
Disclosed is a method of diagnosing a malfunction in a dual clutch transmission (DCT) attributable to a gear synchromesh failure, without an output shaft speed sensor. The method includes: calculating, a difference (referred to as a first difference) between a first input shaft speed and the product of a wheel speed and a first gear ratio; a difference (referred to as a second difference) between a second input shaft speed and the product of a wheel speed and a second gear ratio; diagnosing a first input shaft as having a transmission gear synchromesh failure when the first difference is greater than a first reference value and the second difference is equal to or smaller than a second reference value; and performing control such that a gear shifting operation is performed using only a second input shaft when the first input shaft is diagnosed as having a transmission gear synchromesh failure.
Abstract:
A method for controlling driving of a vehicle includes diagnosing whether or not a wheel speed sensor has failed when a shift lever is changed to an R-range while a vehicle travels in a lowest forward gear provided on a same shaft as a reverse gear is provided, disengaging the lowest forward gear and then engaging the reverse gear when the wheel speed sensor is diagnosed to be in a normal state, and calculating a vehicle speed using the wheel speed sensor in a simultaneous disengagement range, in which an odd gear and an even gear are simultaneously disengaged, during gear engagement in the disengagement of the lowest forward gear and then engaging the reverse gear.
Abstract:
A shift-by-wire control apparatus includes: a first detector that detects a first vehicle state; a second detector that detects a second vehicle state; an auto parking controller that executes an auto parking control irrespective of a state of a shift range, on conditions that detection results derived from the first and second detectors satisfy respective predetermined conditions; and a malfunction determining unit that determines that the first detector is malfunctioning, on a condition that the first detector fails to detect a change in the first vehicle state. The auto parking controller executes, based on the detection result derived from the second detector, the auto parking control irrespective of the detection result derived from the first detector, on a condition that the first detector is determined by the malfunction determining unit as malfunctioning.
Abstract:
A shifting range sensing system, may include a shift lever pivotally connected to a vehicle body, a shift range sensing apparatus to sense a pivotal movement of the shift lever, an inhibitor switch mounted in a transmission, and a controller taking an emergency measure when a signal of the inhibitor switch and a signal of the shifting range sensing apparatus do not indicate the same shifting range.
Abstract:
The present subject matter provides a method for operating an automatic transmission in a limp mode. The method includes actuating a first non-positive shifting element to an engaged configuration and actuating a second non-positive shifting element to the engaged configuration. A positive shifting element is substantially synchronized after actuating the second non-positive shifting element. The method also includes commanding the positive shifting element to actuate from a disengaged configuration to the engaged configuration.
Abstract:
A vehicle includes a motor, a resolver which detects a rotation angle of the motor, an automatic transmission which shifts rotation of the motor and transmits the shifted rotation to a drive shaft, and an ECU which performs learning control for correcting an error of the resolver and shift control of the automatic transmission. The ECU controls the automatic transmission such that, when the learning control is performed, a gear ratio becomes higher at a prescribed vehicle speed, than that when the learning control is not performed. By controlling the automatic transmission as described above, even when the vehicle is traveling at a low speed, a rotation speed of the motor easily reaches a rotation speed at and above which the learning control of the resolver can be performed. Accordingly, an opportunity to perform the learning control of the resolver can be obtained early.