摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for recognizing speech by adapting automatic speech recognition pronunciation by acoustic model restructuring. The method identifies an acoustic model and a matching pronouncing dictionary trained on typical native speech in a target dialect. The method collects speech from a new speaker resulting in collected speech and transcribes the collected speech to generate a lattice of plausible phonemes. Then the method creates a custom speech model for representing each phoneme used in the pronouncing dictionary by a weighted sum of acoustic models for all the plausible phonemes, wherein the pronouncing dictionary does not change, but the model of the acoustic space for each phoneme in the dictionary becomes a weighted sum of the acoustic models of phonemes of the typical native speech. Finally the method includes recognizing via a processor additional speech from the target speaker using the custom speech model.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for selecting a speech recognition model in a standardized speech recognition infrastructure. The system receives speech from a user, and if a user-specific supervised speech model associated with the user is available, retrieves the supervised speech model. If the user-specific supervised speech model is unavailable and if an unsupervised speech model is available, the system retrieves the unsupervised speech model. If the user-specific supervised speech model and the unsupervised speech model are unavailable, the system retrieves a generic speech model associated with the user. Next the system recognizes the received speech from the user with the retrieved model. In one embodiment, the system trains a speech recognition model in a standardized speech recognition infrastructure. In another embodiment, the system handshakes with a remote application in a standardized speech recognition infrastructure.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for improving automatic speech recognition performance. A system practicing the method identifies idle speech recognition resources and establishes a supplemental speech recognizer on the idle resources based on overall speech recognition demand. The supplemental speech recognizer can differ from a main speech recognizer, and, along with the main speech recognizer, can be associated with a particular speaker. The system performs speech recognition on speech received from the particular speaker in parallel with the main speech recognizer and the supplemental speech recognizer and combines results from the main and supplemental speech recognizer. The system recognizes the received speech based on the combined results. The system can use beam adjustment in place of or in combination with a supplemental speech recognizer. A scheduling algorithm can tailor a particular combination of speech recognition resources and release the supplemental speech recognizer based on increased demand.
摘要:
A method and system of providing media content is disclosed. In a particular embodiment, the method includes receiving media content from a content source at a set-top box device. The media content includes video data having a first playback rate and audio data having the first playback rate. The method further includes transforming the audio data via a non-linear transformation to produce modified audio data having a second playback rate, modifying the video data to produce modified video data having the second playback rate, and synchronizing the modified audio data and the modified video data to produce modified media content having the second playback rate. A network-based media content storage device and associated logic to provide adjusted rate audio content are also disclosed.
摘要:
Systems and methods are provided for recognizing speech in a spoken dialogue system. The method includes receiving input speech having a pre-vocalic consonant or a post-vocalic consonant, generating at least one output lattice that calculates a first score by comparing the input speech to a training model to provide a result and distinguishing between the pre-vocalic consonant and the post-vocalic consonant in the input speech. A second score is calculated by measuring a similarity between the pre-vocalic consonant or the post vocalic consonant in the input speech and the first score. At least one category is determined for the pre-vocalic match or mismatch or the post-vocalic match or mismatch by using the second score and the results of the an automated speech recognition (ASR) system are refined by using the at least one category for the pre-vocalic match or mismatch or the post-vocalic match or mismatch.
摘要:
Disclosed are systems, methods and computer readable media for applying a multi-state barge-in acoustic model in a spoken dialogue system comprising the steps of (1) presenting a prompt to a user from the spoken dialog system. (2) receiving an audio speech input from the user during the presentation of the prompt, (3) accumulating the audio speech input from the user, (4) applying a non-speech component having at least two one-state Hidden Markov Models (HMMs) to the audio speech input from the user, (5) applying a speech component having at least five three-state HMMs to the audio speech input from the user, in which each of the five three-state HMMs represents a different phonetic category, (6) determining whether the audio speech input is a barge-in-speech input from the user, and (7) if the audio speech input is determined to be the barge-in-speech input from the user, terminating the presentation of the prompt.
摘要:
Disclosed are systems and methods for recognizing speech in a spoken dialogue system. The method includes (1) receiving an input speech having at least one pre-vocalic consonant or at least one post-vocalic consonant, (2) generating at least one output lattice that calculates a first score by comparing the input speech to a training model to provide a result; (3) distinguishing between the at least one pre-vocalic consonant and the at least one post-vocalic consonant in the input speech, (4) calculating a second score by measuring a similarity between the at least one pre-vocalic consonant or the at least one post vocalic consonant in the input speech and the first score, (5) determining at least one category for at least one pre-vocalic match or mismatch or at least one post-vocalic match or mismatch by using the second score, and (6) refining the results of the an automated speech recognition (ASR) system by using the at least one category for at least one pre-vocalic match or mismatch or at least one post-vocalic match or mismatch.
摘要:
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for speaker recognition personalization. The method recognizes speech received from a speaker interacting with a speech interface using a set of allocated resources, the set of allocated resources including bandwidth, processor time, memory, and storage. The method records metrics associated with the recognized speech, and after recording the metrics, modifies at least one of the allocated resources in the set of allocated resources commensurate with the recorded metrics. The method recognizes additional speech from the speaker using the modified set of allocated resources. Metrics can include a speech recognition confidence score, processing speed, dialog behavior, requests for repeats, negative responses to confirmations, and task completions. The method can further store a speaker personalization profile having information for the modified set of allocated resources and recognize speech associated with the speaker based on the speaker personalization profile.
摘要:
A method and system for training an automatic speech recognition system are provided. The method includes separating training data into speaker specific segments, and for each speaker specific segment, performing the following acts: generating spectral data, selecting a first warping factor and warping the spectral data, and comparing the warped spectral data with a speech model. The method also includes iteratively performing the steps of selecting another warping factor and generating another warped spectral data, comparing the other warped spectral data with the speech model, and if the other warping factor produces a closer match to the speech model, saving the other warping factor as the best warping factor for the speaker specific segment. The system includes modules configured to control a processor in the system to perform the steps of the method.
摘要:
The present disclosure relates to systems, methods, and computer-readable media for generating a lexicon for use with speech recognition. The method includes overgenerating potential pronunciations based on symbolic input, identifying potential pronunciations in a speech recognition context, and storing the identified potential pronunciations in a lexicon. Overgenerating potential pronunciations can include establishing a set of conversion rules for short sequences of letters, converting portions of the symbolic input into a number of possible lexical pronunciation variants based on the set of conversion rules, modeling the possible lexical pronunciation variants in one of a weighted network and a list of phoneme lists, and iteratively retraining the set of conversion rules based on improved pronunciations. Symbolic input can include multiple examples of a same spoken word. Speech data can be labeled explicitly or implicitly and can include words as text and recorded audio.