Abstract:
A system and method of identifying and removing artifact from radio frequency noise from biopotentials identifies epochs contaminated with radio frequency noise. Contaminated epochs are then replaced with recent uncontaminated epochs stored in a buffer, depending on the current level of artifact and the availability of suitable data. Discontinuities arising at the beginning of the replaced epochs are smoothed by means of a windowing function.
Abstract:
A system and method for controlling the administration of medication to a patient utilizes adaptive feedback to achieve and maintain a target effect in said patient. A sensor package having one or more sensors is used to sense an attribute of the patient and to provide a parameter indicating the attribute being sensed. A medication delivery controller accepts one or more parameters from the sensor package and uses these parameters to determine the effect of a medication on a patient and the concentration level of medication that will achieve a desired effect. The medication delivery controller controls the medication delivery unit to deliver the medication at a rate determined to achieve said target concentration level of said medication in said patient. If the patient's response to a given medication changes as a result of external stimuli, the medication delivery controller can detect this change and determine a new concentration level of medication which will achieve the desired effect. The medication delivery controller can steer the medication delivery unit to administer an amount of medication to reach this new concentration level.
Abstract:
A method for measuring bioelectric impedance in real time, in the presence of interference and noise is disclosed. A small electric current is injected into a biopotential electrode system, and then the measurement is tested for contamination by electrical interference or other noise sources.
Abstract:
A system and method for controlling the administration of medication to a patient utilizes adaptive feedback to achieve and maintain a target effect in said patient. A sensor package having one or more sensors is used to sense an attribute of the patient and to provide a parameter indicating the attribute being sensed. A medication delivery controller accepts one or more parameters from the sensor package and uses these parameters to determine the effect of a medication on a patient and the concentration level of medication that will achieve a desired effect. The medication delivery controller controls the medication delivery unit to deliver the medication at a rate determined to achieve said target concentration level of said medication in said patient. If the patient's response to a given medication changes as a result of external stimuli, the medication delivery controller can detect this change and determine a new concentration level of medication which will achieve the desired effect. The medication delivery controller can steer the medication delivery unit to administer an amount of medication to reach this new concentration level.
Abstract:
The present invention is a system and method that produces features and indices that indicate the presence or absence of a disease or condition, or of the progression of a disease or condition. The system and method of the present invention also produce features and indices that predict responsiveness to medication from a premedication baseline. The system and method of the present invention further incorporates a testing methodology to improve the performance characteristics of the features or indices. To obtain such features and indices, time domain, power spectrum, bispectrum and higher order spectrum values are derived from biopotential signals taken from the subject being tested.