Abstract:
A control system for an engine of a vehicle includes a shift forecasting module that forecasts one of an upshift and a downshift of a manual transmission based on vehicle acceleration, clutch pedal position, acceleration pedal position and brake pedal position. A gear state calculating module determines a current gear state based on a speed of the engine and a speed of the vehicle. A next gear state calculating module determines a next gear state. The next gear state is based on the current gear state and the one of the upshift and downshift. A next engine speed calculating module estimates an estimated engine speed based on the next gear state and the vehicle speed. An engine speed control module adjusts the engine speed based on the estimated engine speed.
Abstract:
A powertrain has an engine with a crankshaft. The powertrain includes a planetary gear set having a first, a second, and a third member. The first member is connected for common rotation with an input member. A first clutch is selectively engageable to operatively connect the crankshaft with the input member. A second clutch is selectively engageable to ground the input member with a stationary member. An electric motor/generator has a rotor operatively connected for common rotation with the second member. An output member is provided, with a set of intermeshing gears configured to transfer torque from the third member to the output member. A first gear pair and a second gear pair are operable by engagement of a first synchronizer and a second synchronizer, respectively, to provide two different fixed ratios between the input member and the output member.
Abstract:
A hybrid powertrain has an engine, an input member, an output member, and a stationary member, and includes a single planetary gear set having a first, a second, and a third member. The input member is connected for common rotation with the engine and the output member is connected for common rotation with the second member. A single motor/generator is continuously connected for common rotation with the third member. A starter motor is operatively connected to the engine for starting the engine. A first torque-transmitting mechanism is selectively engagable to connect the input member for rotation with the first member. A second torque-transmitting mechanism is selectively engagable to ground the first member to the stationary member. A third torque-transmitting mechanism is selectively engagable to ground the third member to the stationary member. The powertrain is operable in an electric-only operating mode, an engine-only operating mode, and an electrically-variable operating mode.
Abstract:
A control system for an engine of a vehicle includes a shift forecasting module that forecasts one of an upshift and a downshift of a manual transmission based on vehicle acceleration, clutch pedal position, acceleration pedal position and brake pedal position. A gear state calculating module determines a current gear state based on a speed of the engine and a speed of the vehicle. A next gear state calculating module determines a next gear state. The next gear state is based on the current gear state and the one of the upshift and downshift. A next engine speed calculating module estimates an estimated engine speed based on the next gear state and the vehicle speed. An engine speed control module adjusts the engine speed based on the estimated engine speed.
Abstract:
A hybrid powertrain has an engine, an input member, an output member, and a stationary member, and includes a single planetary gear set having a first, a second, and a third member. The input member is connected for common rotation with the engine. The output member is connected for common rotation with the second member. A first and a second motor/generator are provided, as well as five torque-transmitting mechanisms, including only one brake. The torque-transmitting mechanisms are engagable in different combinations to establish at least two electric-only operating mode, at least two engine-only operating mode, and at least three electrically-variable operating modes. In one embodiment, an electric torque converter operating mode is provided, and may be the default mode in case of motor/generator failure.
Abstract:
A powertrain has an engine with a crankshaft. The powertrain includes a planetary gear set having a first, a second, and a third member. The first member is connected for common rotation with an input member. A first clutch is selectively engageable to operatively connect the crankshaft with the input member. A second clutch is selectively engageable to ground the input member with a stationary member. An electric motor/generator has a rotor operatively connected for common rotation with the second member. An output member is provided, with a set of intermeshing gears configured to transfer torque from the third member to the output member. A first gear pair and a second gear pair are operable by engagement of a first synchronizer and a second synchronizer, respectively, to provide two different fixed ratios between the input member and the output member.
Abstract:
A hybrid powertrain has an engine, an input member, an output member, and a stationary member, and includes a single planetary gear set having a first, a second, and a third member. The input member is connected for common rotation with the engine and the output member is connected for common rotation with the second member. A single motor/generator is continuously connected for common rotation with the third member. A starter motor is operatively connected to the engine for starting the engine. A first torque-transmitting mechanism is selectively engagable to connect the input member for rotation with the first member. A second torque-transmitting mechanism is selectively engagable to ground the first member to the stationary member. A third torque-transmitting mechanism is selectively engagable to ground the third member to the stationary member. The powertrain is operable in an electric-only operating mode, an engine-only operating mode, and an electrically-variable operating mode.
Abstract:
A hybrid powertrain has an engine, an input member, an output member, and a stationary member, and includes a single planetary gear set having a first, a second, and a third member. The input member is connected for common rotation with the engine. The output member is connected for common rotation with the second member. A first and a second motor/generator are provided, as well as five torque-transmitting mechanisms, including only one brake. The torque-transmitting mechanisms are engagable in different combinations to establish at least two electric-only operating mode, at least two engine-only operating mode, and at least three electrically-variable operating modes. In one embodiment, an electric torque converter operating mode is provided, and may be the default mode in case of motor/generator failure.