Abstract:
An EP catheter includes a tip electrode having a core primarily comprised of copper with an outer layer of a biocompatible metal disposed thereon exhibits appropriate electrical and thermal conduction characteristics while being cost-effective to produce. Alternatively, an inner layer of a biocompatible metal is disposed on the inside of the primarily copper core. Such a tip electrode may also be provided with irrigation lumens. Such a tip electrode could be manufactured from sheets of metal that upon extrusion would comprise the outer layer, core and optional inner layer respectively.
Abstract:
A low attenuation radioactive seed utilizing a core having a fluted or non-circular cross section is utilized for increasing the dose rate, decreasing the dwell times and improving the clinical outcomes by increasing the dose consistency throughout the treatment zone. The fluted or non-circular cross section core would increase the surface area for the deposition of the radioactive substance thereby increasing the therapeutic efficacy of the seed. In addition, the fluted or non-circular cross section may be designed in a manner to reduce photon emission attenuation by reducing the distance an inwardly directed photon would have to travel to traverse the core.
Abstract:
An EP catheter includes a tip electrode having a core primarily comprised of copper with an outer layer of a biocompatible metal disposed thereon exhibits appropriate electrical and thermal conduction characteristics while being cost-effective to produce. Alternatively, an inner layer of a biocompatible metal is disposed on the inside of the primarily copper core. Such a tip electrode may also be provided with irrigation lumens. Such a tip electrode could be manufactured from sheets of metal that upon extrusion would comprise the outer layer, core and optional inner layer respectively.
Abstract:
A elongate tubular catheter uses spirally sliced tubes to provide flexible support having pushability in a number of roles. The spirally sliced tube may be used in place of a stiffening tube thereby providing a catheter that can have variable degrees of flexibility along its length. Alternatively, the spirally sliced tube may be used in place of a compression wire or other puller wire sleeve. The spirally sliced tubes may also be used as the inner or outer wall of an irrigation lumen within the catheter. The flexibility of the catheter can be easily modified during manufacture by varying the pitch angle of the spiral slice. Flexibility along the length of the catheter can also be modified by using one or more spirally sliced tubes or tubes in which only portions are spirally sliced.
Abstract:
A radioactive substance absorber is incorporated into an intravascular radiotherapy source ribbon assembly to prevent the migration of radioactive matter throughout the assembly container. The radioactive substance absorber comprises carbon in various forms and configurations. The radioactive substance absorber is positioned in proximity to the source core and absorbs radioactive materials which break free from the source core, thereby containing the radioactive material.
Abstract:
A radioactive source ribbon assembly may be reusably utilized in conjunction with a delivery sheath or catheter for delivering therapeutic dosages of ionizing radiation to various anatomical regions. The radioactive source ribbon assembly comprises an outer jacket formed from or coated with a lubricious coating for insertion into the delivery sheath or catheter. The assembly also comprises a radiation resistant sleeve formed from a braided structure which encapsulates a radioactive source and core. The braided structure is the primary axial load bearing member of the assembly and functions as such without sacrificing assembly flexibility.
Abstract:
A unidummy intravascular radiotherapy source ribbon assembly is utilized to properly align radioactive seeds in a radioactive intravascular radiotherapy source ribbon assembly to control the dose rate profile such that only the proper tissue is irradiated. The source ribbon assembly includes a core comprising one or more sections having a first radiopacity and one or more sections having a second radiopacity.