摘要:
Process for separating nitrogen from a gas mixture containing nitrogen and at least one gas which is less polar than nitrogen, and employing a differential gas adsorption technique, called PSA process, using an adsorbent of zeolite type, according to which the PSA process is used at a temperature of at least 40° C. by employing as adsorbent a zeolite whose nitrogen adsorption isotherm at 20° C. exhibits a curvature characterized by a parameter C defined by the formula: C = P 1 q ( P 2 ) P 2 q ( P 1 ) where q(P1) denotes the quantity of nitrogen adsorbed at pressure P1 and q(P2) that adsorbed at pressure P2, and the pressures P1 and P2 are defined respectively from the high and low pressures of the PSA cycle in question, C being equal to at least 2.5.
摘要:
PSA process for the separation of nitrogen from a gaseous mixture containing nitrogen by selective adsorption of nitrogen from the gaseous mixture in an adsorbent mass with cyclic pressure variations. At least one nitrogen adsorption phase is carried out at high pressure and at least one nitrogen desorption phase is carried out at low pressure. The adsorbent mass is arranged in a rotating adsorber and at least 50% of the adsorbent mass is constituted by a zeolite exchanged with lithium by more than 50%.
摘要:
A method for separating gases wherein the gases to be separated are contacted with a particulate composite material with a carbon matrix to selectively adsorb gases. The material contains a microporous phase which is essentially carbon with a microporous volume between 0.1 cm.sup.2 /g and 1 cm.sup.2 /g, which is associated with an amorphous mineral dispersed phase containing an oxide of silicon, aluminum, titanium or magnesium disposed on the carbon phase at a thickness of less than 10 nm.
摘要:
The present invention concerns a polyphase particulate composite material containing a microporous phase which is essentially carbon whose microporous volume is between 0.1 cm.sup.3 /g and 1 cm.sup.3 /g, which is associated with an amorphous mineral dispersed phase essentially consisting of an oxide of silicon, aluminum, titanium or magnesium disposed on the carbon phase, at a thickness of less than 10 nm. The invention is also concerned with a process for the preparation of these composite materials, and the use thereof as a molecular sieve.