摘要:
In a method and apparatus for correcting distortion during magnetic resonance imaging k space data in a number of readout encoding directions, sampling points on the phase encoding lines are primarily in low frequency regions of k space and the number of such sampling points is less than that of all sampling points. A view angle tilting compensation gradient is superimposed on the axis of a layer selection gradient. The k space data acquired from the number of directions are then combined.
摘要:
A receiving device for an MRI (magnetic resonance imaging) system has multiple receiving coils. In the same imaging acceleration direction, a junction region is formed between adjacent receiving coils. An additional receiving coil is arranged on the junction region. The additional receiving coil covers at least partially a line of strong phase variation in sensitivity at the boundary of said junction region. This receiving device alleviates the problem of poor sensitivity to MRI signals in the junction region in the imaging acceleration direction, so as to improve the imaging quality in the junction region, and thus improving the overall imaging quality.
摘要:
A receiving device for an MRI (magnetic resonance imaging) system has multiple receiving coils. In the same imaging acceleration direction, a junction region is formed between adjacent receiving coils. An additional receiving coil is arranged on the junction region. The additional receiving coil covers at least partially a line of strong phase variation in sensitivity at the boundary of said junction region. This receiving device alleviates the problem of poor sensitivity to MRI signals in the junction region in the imaging acceleration direction, so as to improve the imaging quality in the junction region, and thus improving the overall imaging quality.
摘要:
In a method and apparatus for correcting distortion during magnetic resonance imaging k space data in a number of readout encoding directions, wherein the sampling points on the phase encoding lines are concentrated in low frequency regions and their number is less than that of full sampling points. A view angle tilting compensation gradient is superimposed on the axis of a layer selection gradient. The k space data acquired from the number of directions are then combined. Due to the fact that the superimposition of the view angle tilting compensation gradient on the axis of the slice selection gradient can effectively correct geometric distortions, and at the same time the resolution in phase encoding lines is relatively high, low resolution contents are provided only in readout encoding directions, so the degree of blurring in the final image is substantially reduced. Furthermore, by acquiring the k space data in a number of readout directions the sensitivity to motion artifacts can effectively be reduced. Not only can correction of the geometric distortion be performed during magnetic resonance imaging, but the degree of blurring and motion artifacts in the final image.
摘要:
The invention discloses a method and an apparatus for reconstructing a parallel-acquired image, comprising: generating reconstruction data by combining uniformly under-sampled data and low-frequency fully-sampled data in MRI K-space according to a hybrid sampling mode; calculating the sensitivity distribution of a coil according to said low-frequency fully-sampled data; and reconstructing an image according to the reconstruction data, the coil's sensitivity distribution and the hybrid sampling mode. The signal to noise ratio of the reconstructed image is effectively improved by using the reconstruction data combined with the low-frequency fully-sampled data in reconstructing the image since the low-frequency fully-sampled data contains more useful information.
摘要:
The invention discloses a method for calculating the signal-to-noise ratio (SNR) in parallel acquisition image reconstruction, comprising: determining a reconstruction expression for a linear operation of the image reconstruction; determining a weighted coefficient according to the reconstruction expression; calculating the SNR according to the weighted coefficient and the raw data. The SNR not only is relevant to the geometric shape and position of the coils, but also is influenced by the reconstruction method and the sampling mode. The SNR is calculated based on contribution of the raw data at positions in the reading direction from all the phase-coding lines in all acquisition channels. It reflects more precisely the loss of the SNR in the parallel acquisition image reconstruction, especially the changes in the SNR caused by the number of the reference lines combined during the reconstruction.
摘要:
The invention discloses a method and an apparatus for reconstructing a parallel-acquired image, comprising: generating reconstruction data by combining uniformly under-sampled data and low-frequency fully-sampled data in MRI K-space according to a hybrid sampling mode; calculating the sensitivity distribution of a coil according to said low-frequency fully-sampled data; and reconstructing an image according to the reconstruction data, the coil's sensitivity distribution and the hybrid sampling mode. The signal to noise ratio of the reconstructed image is effectively improved by using the reconstruction data combined with the low-frequency fully-sampled data in reconstructing the image since the low-frequency fully-sampled data contains more useful information.
摘要:
The invention discloses a method for calculating the signal-to-noise ratio (SNR) in parallel acquisition image reconstruction, comprising: determining a reconstruction expression for a linear operation of the image reconstruction; determining a weighted coefficient according to the reconstruction expression; calculating the SNR according to the weighted coefficient and the raw data. The SNR not only is relevant to the geometric shape and position of the coils, but also is influenced by the reconstruction method and the sampling mode. The SNR is calculated based on contribution of the raw data at positions in the reading direction from all the phase-coding lines in all acquisition channels. It reflects more precisely the loss of the SNR in the parallel acquisition image reconstruction, especially the changes in the SNR caused by the number of the reference lines combined during the reconstruction.