摘要:
Disclosed herein is a thermoelectric material for intermediate- and low-temperature applications, in which any one or a mixture of two or more selected from among La, Sc and MM is added to a Ag-containing metallic thermoelectric material or semiconductor thermoelectric material. The thermoelectric material has a low thermal diffusivity, a high Seebeck coefficient, a low specific resistivity, a high power factor and a low thermal conductivity, and thus has a high dimensionless figure of merit, thus showing very excellent thermoelectric properties. The thermoelectric material provide thermoelectric sensors having high sensitivity and low noise and, in addition, is widely used as a thermoelectric material for intermediate- and low-temperature applications, because it shows excellent thermoelectric performance in the intermediate- and low-temperature range.
摘要:
Disclosed herein are a method for manufacturing a functional material for use in various industrial fields in which anisotropy or physical properties change according to height may be utilized, as well as a functional material manufactured thereby. The method includes the steps of: (1) mixing powders composed of the components of the functional material with a binder to prepare a mixed paste; (2) coating the mixed paste on a substrate, and then separating the coated material from the substrate, thus preparing a slice; (3) repeating step (2) to prepare a plurality of slices, and stacking the slices in a mold; and (4) pressing the stacked slices at a predetermined temperature and pressure. A multifunctional material, such as an anisotropic material having physical properties which change according to the direction of material, or a material having physical properties which change in a graduated manner according to height, may be manufactured in a simple and economical manner.
摘要:
Disclosed herein are a method for manufacturing a functional material for use in various industrial fields in which anisotropy or physical properties change according to height may be utilized, as well as a functional material manufactured thereby. The method includes the steps of: (1) mixing powders composed of the components of the functional material with a binder to prepare a mixed paste; (2) coating the mixed paste on a substrate, and then separating the coated material from the substrate, thus preparing a slice; (3) repeating step (2) to prepare a plurality of slices, and stacking the slices in a mold; and (4) pressing the stacked slices at a predetermined temperature and pressure. A multifunctional material, such as an anisotropic material having physical properties which change according to the direction of material, or a material having physical properties which change in a graduated manner according to height, may be manufactured in a simple and economical manner.