Abstract:
Systems and methods for neutron porosity well logging with high precision and reduced lithology effects are provided. In accordance with an embodiment, a downhole neutron porosity tool may include a neutron source, a neutron monitor, a neutron detector, and data processing circuitry. The neutron source may emit neutrons into a subterranean formation while the neutron monitor detects a count of neutrons proportional to the neutrons emitted. The neutron detector may detect a count of neutrons that scatters off the subterranean formation. The data processing circuitry may determine an environmentally corrected porosity of the subterranean formation based at least in part on the count rate of neutrons scattered off the subterranean formation normalized to the count rate of neutrons proportional to the neutrons emitted by the neutron source.
Abstract:
Systems, methods, and devices for determining a porosity of a subterranean formation corrected for borehole effects are provided. One such device may be a downhole tool capable of being lowered into a borehole of a subterranean formation that may include a neutron source, two or more neutron detectors, and data processing circuitry. The neutron source may emit neutrons into the subterranean formation. The two or more neutron detectors may be respectively disposed at two or more azimuthal orientations within the downhole tool, and may detect neutrons scattered by the subterranean formation or borehole fluid in the borehole, or both. Based on the neutrons detected by the neutron detectors, the data processing circuitry may determine a porosity of the subterranean formation corrected for borehole effects.
Abstract:
Methods and devices relating to a radiation detector comprising of a gas chamber having a cathode plate and a substrate separated by a gap. An array of nano-tips deposited on the substrate that forms an anode structure for electron charge collection. An external power source in communication with the cathode plate and the substrate, wherein the external power source is capable of generating a plurality of regions and each region includes an electric field near each nano-tip of the array of the nano-tips that results in initiating a radiation induced controlled discharge of electrons and ions from at least one gas or at least one gas mixture. Finally, the plurality of regions include multiple generated electric fields near tips of the array of nano-tips such as CNTs, that communicatively create a conductive path between the cathode plate and the substrate, the radiation detector is capable of determining at least one radiation property.
Abstract:
Methods and devices relating to a radiation detector comprising of a gas chamber having a cathode plate and a substrate separated by a gap. An array of nano-tips deposited on the substrate that forms an anode structure for electron charge collection. An external power source in communication with the cathode plate and the substrate, wherein the external power source is capable of generating a plurality of regions and each region includes an electric field near each nano-tip of the array of the nano-tips that results in initiating a radiation induced controlled discharge of electrons and ions from at least one gas or at least one gas mixture. Finally, the plurality of regions include multiple generated electric fields near tips of the array of nano-tips such as CNTs, that communicatively create a conductive path between the cathode plate and the substrate, the radiation detector is capable of determining at least one radiation property.
Abstract:
Systems, methods, and devices for determining a porosity of a subterranean formation corrected for borehole effects are provided. One such device may be a downhole tool capable of being lowered into a borehole of a subterranean formation that may include a neutron source, two or more neutron detectors, and data processing circuitry. The neutron source may emit neutrons into the subterranean formation. The two or more neutron detectors may be respectively disposed at two or more azimuthal orientations within the downhole tool, and may detect neutrons scattered by the subterranean formation or borehole fluid in the borehole, or both. Based on the neutrons detected by the neutron detectors, the data processing circuitry may determine a porosity of the subterranean formation corrected for borehole effects.
Abstract:
Measurement-while-drilling apparatus includes a 14 MeV neutron accelerator, a near-spaced neutron detector which primarily senses source neutrons and whose output is proportional to source strength, one or more intermediately-spaced epithermal neutron detectors eccentered against the drill collar wall and primarily responsive to formation hydrogen concentration, and a third far-spaced radiation detector, either gamma ray or neutron, primarily responsive to formation density. The intermediately-spaced and far-spaced detector outputs, normalized by the near-spaced detector output, are combined to provide measurements of porosity, density and lithology and to detect gas. A thermal neutron detector and/or a gamma ray detector may also be provided at intermediate spacings to provide additional information of interest, such as standoff measurements and spectral analysis of formation composition. Tool outputs are related to the angular or azimuthal orientation of the measurement apparatus in the borehole.
Abstract:
A nuclear tool includes a tool housing; a neutron generator disposed in the tool housing; and a solid-state neutron monitor disposed proximate the neutron generator for monitoring the output of the neutron generator. A method for constructing a nuclear tool includes disposing a neutron generator in a tool housing; and disposing a solid-state neutron monitor proximate the neutron generator for monitoring the output of the neutron generator. A method for logging a formation includes disposing a nuclear tool in a wellbore penetrating the formation, wherein the nuclear tool comprises a neutron generator and a solid-state neutron monitor disposed proximate the neutron generator; generating neutrons from the neutron generator; monitoring neutrons generated by the neutron generator using the solid-state neutron monitor; detecting signals generated from the neutrons traveling in the formation; and correcting the detected signals, based on signal strength detected by the solid-state neutron monitor, to produce corrected signals.
Abstract:
An LuAP scintillation detector and a method for improving the light output and uniformity of an LuAP scintillator crystal is provided, wherein the method includes disposing the scintillator crystal in a predetermined environment at a threshold temperature to generate an initial scintillator crystal, annealing the initial scintillator crystal in the predetermined environment at the threshold temperature to create an annealed scintillator crystal and cooling the annealed scintillator crystal in the predetermined environment to a final temperature.
Abstract:
A method of measuring flow velocities in flowing fluids includes injecting into the flow a non-radioactive tracer having a neutron capture cross section higher than that of the flowing fluids, for example a gadolinium compound, and measuring the neutron capture cross section in the fluid downstream of the injection point to detect the passage of the tracer and hence determine the time of flight. By making the tracer miscible with only one phase (typically the continuous phase) of a multi-phase fluid, it is possible to measure the flow velocity of that phase. The neutron capture cross section can be measured by irradiating with neutrons from a pulsed neutron generator and measuring capture .gamma. rays with a scintillation detector.
Abstract:
A method and an apparatus for decomposing a gamma spectrum representative of an unknown material for determining the contribution of each constituent postulated to constitute the material, wherein an energy spectrum of the gamma rays issued from the material is formed, as well as a composite spectrum made up of individual standard spectra of the postulated constituents and comprising elemental yields being representative of the proportion of the corresponding constituents; the best fit between the measured spectrum and the composite spectrum is determined by modifying simultaneously at least one elemental yield and at least one parameter representative of the conditions under which the measured spectrum and the composite spectrum have been obtained. The best fit may be based on any non linear least squares search for a global minimum of X.sup.2 =(S Y-U).sup.T W(S Y-U), where "U" is a matrix representing the measured spectrum, "S" is a matrix representing the composite spectrum, "Y" is a matrix representative of the elemental yields and "W" is a weight matrix. The non linear fitting method used may be e.g. a gradient search or the Marquardt method.