Abstract:
The present invention relates to the use of antimicrobial peptides in the inhibition of microbial growth and proliferation. Novel antimicrobial truncated peptides are disclosed which are based upon SMAP 29 and RCAP 18, but which contain a lesser number of amino acid residues yet still retain bactericidal activity. In addition, synthetic peptides based upon the SMAP 29 protein are disclosed which have fewer amino acid residues and include substitutions yet retain substantial activity. The invention also relates to a method of inhibiting microbial growth by administering an effective amount of a peptide in accordance with the invention, or by combining the peptides with other antimicrobial agents or antibiotics.
Abstract:
The present invention relates a novel antimicrobial peptide HBD-3 and derivatives thereof as well as the gene encoding the peptide. The invention further relates to methods of use of the HBD-3 peptide including a method of inhibiting microbial growth by administering an effective amount of the HBD-3 peptide alone or in combinination with other antimicrobial agents or antibiotics. In addition, the immunomodulatory properties of the HBD-3 peptide also facilitate the manipulation of the immune response, i.e., as a chemoattractant for immature dentritic cells or memory T cells.
Abstract:
Novispirin peptides are antimicrobial agents with potent activity against Gram-negative bacteria. The peptides are nonhemolytic, exhibit reduced in vitro cytotoxicity relative to other antimicrobial peptides, and were well-tolerated in vivo after intravenous injection. Novispirins also bind lipopolysaccharide (LPS), a property that may mitigate symptoms associated with Gram-negative bacterial infection. A pharmaceutical composition comprising novispirin as an active agent is administered to a patient suffering from or predisposed to a microbial infection, particularly Gram-negative bacterial infections.