Abstract:
The invention is a process for the beneficiation and utilization of various kinds of coal and shale oil as a solid fuel for thermoelectric power stations. The beneficiation process is performed underground, near to the place of beneficiation waste stowing, using aqueous salt solution with a density between those of the target component and waste rock. The regeneration of heavy liquid from final beneficiation tailings is performed by washing with non-aqueous volatile liquid, with subsequent drying by the subsurface heat after placing these tailings in the worked-out space. The resulting vapors are compressed and condensed; thus regenerated non-aqueous liquid is returned for washing the beneficiation tailings, while effluents produced by washing are separated into aqueous and non-aqueous components by heat released at the liquefaction of the non-aqueous liquid vapors. The enriched solid fuel remaining in the floatable state is delivered by its flow to the thermo-electric power plant.
Abstract:
The invention relates to mining of fossil energy minerals and can be applied to the beneficiation and utilization of various kinds of coal and shale oil as a solid fuel for thermoelectric power stations. The object of the invention is to reduce the energy consumption of mining energy generation, to eliminate solid fuel loss, to reduce water consumption and to protect the environment. To this end, the beneficiation process is performed underground, in the immediate proximity to the place of beneficiation waste stowing, using aqueous salt solution with a density intermediate between those of the target component and waste rock. The regeneration of heavy liquid from final beneficiation tailings is performed by washing with non-aqueous volatile liquid, with subsequent drying by the subsurface heat after placing these tailings in the worked-out space. The resulting vapors are compressed and condensed; thus regenerated non-aqueous liquid is returned for washing the beneficiation tailings, while effluents produced by washing are separated into aqueous and non-aqueous components by heat released at the liquefaction of the non-aqueous liquid vapors. The enriched solid fuel remaining in the floatable state is delivered by its flow to the thermo-electric power plant, where it is separated hydromechanically from liquid component, washed with water, dried and directed to combustion. The effluents from washing with water are evaporated with heat released at the condensation of the working medium of the power station thermodynamic cycle. Then they are mixed with drains from solid fuel delivered to the destination, and returned to the starting point of the process.
Abstract:
The invention relates to the transportation and preparation for combustion of coal used as a solid fuel at heat power plants and can find applications in coal-based power generation. The object of the invention is a complex use of energy resources contained in coal, reduction of power consumption for the realization of the process, expansion of solid fuel pipeline transport application in coal-based power generation, increase in the coal pipeline operation safety, and the environment protection. Prior to the transportation via a pipeline, the initial stream of coal is screened into coarse material and fines, the latter being pressed into cylindrical monolithic blocks. Coal is transported via a pipeline filled with aqueous salt solution with a density exceeding that of the transported material, the coarse coal and pressed blocks being loaded into the pipeline alternately. At the power station, the coal delivered in the aqueous salt solution is separated from the liquid carrier, rinsed with water, dried and ground with simultaneous capturing of released methane. The effluents of rinsing are evaporated by heat released at the condensation of the working medium of the power plant thermodynamic cycle. The remaining stripped solution is mixed with liquid medium separated from the coal and returned to the starting point of the process.