Abstract:
A network comprising: (a) a plurality of different receptacles for facilitating an optical connection to different information networks requiring different access authorization, each different receptacle coupled to one and only one different information network, each receptacle having an inner surface with a first geometry, the first geometry comprising at least a slot, a certain number of receptacles having different first geometries in which the slots are in different positions; and (b) a plurality of different plugs for coupling with the different receptacles, each plug having a second geometry, the second geometry comprising at least a key in a certain position, the certain number of plugs having different second geometries in which the keys are in different positions, each different first geometry corresponding to one and only one second geometry such that the plugs and receptacles of corresponding first and second geometries are mating pairs.
Abstract:
A fiber optic termination for incorporating within a fiber optic connector is capable of mechanical assembly which can preclude the use of adhesives for termination assembly. A metal plunger compresses a bullet having an aperture therethrough into a constriction causing the bullet to grip a fiber. A metal insert lines the interior of an alignment ferrule and engages the actuating plunger with an interference fit. The interference fit retains the plunger over time and over a broad operating temperature range. Dimples on the outer surface of the metal insert create pockets of engagement between the insert and the alignment ferrule that resist axial displacement of the insert relative to the alignment ferrule.
Abstract:
A scribe-and-break tool for fracturing the free end of an optical fiber that is especially suitable for hand-holdable configurations and field use which has an elongate body with a plunger that is interrelated to a blade for scribing the free end of an optical fiber retained in tension within a depressible head that extends outward from the body and is depressible inward to bring the free end of the optical fiber into contact with the blade, thereby scribing the free end of the fiber causing the free end to break off.
Abstract:
A tubular body for use with an optical fiber connector, and the connector using such a tubular body. The optical fiber connector includes a coupling nut, biasing means and a retaining ring which are axially arranged on the tubular body. The coupling nut and the biasing means are retained externally on the tubular body by the retaining ring with the coupling nut being movable along the outside surface of the body and axially displaced by the biasing means. The body includes a ring attachment portion on the outside surface thereof. The ring attachment portion includes an annular groove and an annular ridge which are formed on the outside surface thereof. The annular groove is sized and dimensioned for receiving a radially applied retaining ring. The outside diameter of the attachment portion on the outside surface of the body is sized and dimensioned for receiving an axially attached retaining ring.
Abstract:
A fiber optic connector plug body (1) receives a ferrule (2) therewithin. The plug body (1) receives an internal body (5) in a snap fit to retain the ferrule (2) within the plug body (1). Two inwardly biased latch members (14) on the plug body (1) are received within a circumferential groove on the internal body. The resulting assembly is resistant to disassembly upon application of tensile and lateral forces to the internal body.
Abstract:
An elastic insert for receiving and securing an optical fiber within a passage of a housing, such as a ferrule of an fiber optic connector, when compacted therein by a plunger, the insert having deformable relief regions that are constructed to deform upon compaction so that the optical fiber is securely held by the insert, while controlling the forces exerted outwardly by the insert against the housing along the passage and a fiber optic connector for use with the insert.
Abstract:
A connector for joining light transmitting fiber cables through a cover (14) to a transmitter and/or receiver device (3) comprises a plug half connector (6) comprising a plug (8) and a transceiver adapter (10). The plug (8) has profiled passageway (43) for receiving an optical fiber. The transceiver adapter (10) is an integral two-part structure comprising a transceiver shroud (11) adapted to axially receive the plug (8) and extending axially (38) for aligning the plug (8) forward relative to the transmitter and/or receiver device (3). The adapter (10) further comprises a latching beam mechanism (12) having forward extending latching beams (13), the latching beam mechanism (12) characterized by a wedge shaped plug stop (64) along each of the extending latching beams (13).
Abstract:
A connector for joining light transmitting fiber cables through a cover (14) to a transmitter and/or receiver device (3) comprises a plug connector half (6) and a retention frame (48). The plug connector half (6) comprises a plug (8) having profiled passageway (43) for receiving an optical fiber, a transceiver adapter (10) adapted to axially receive the plug (8) through the cover (14) and extending axially for aligning the plug (8) forward relative to the transmitter and/or receiver device (3). The retention frame (48) is mounted to the cover (14) and captivates the transceiver adapter (10) with play so as to permit free floating of the transceiver adapter (10) relative to the cover within the retention frame (48). The transceiver adapter (10) is an integral two-part structure comprising a transceiver shroud (11) adapted to axially receive the plug (8) and extending axially (38) for aligning the plug (8) relative to the transmitter and/or receiver device( 3), and further having a latching beam mechanism (12) having forward extending latching beams (13).
Abstract:
A connector for joining light transmitting fiber cables through a cover (14) to a transmitter and/or receiver device (3) comprises a plug connector half (6) and a retention frame (48). The plug connector half (6) comprises a plug (8) having profiled passageway (43) for receiving an optical fiber, a transceiver adapter (10 ) adapted to axially receive the plug (8) through the cover (14) and extending forward axially (38) for aligning the plug (8) relative to the transmitter and/or receiver device (3). The retention frame (48) is mounted to the cover (14) and captivates the transceiver adapter (10) with play so as to permit free floating of the transceiver adapter (10) relative to the cover within the retention frame (48). The connector (7) is spring loaded by means of a flexion body (64) positioned between the cover (14) and the captivated transceiver adapter (10). The body (64) substantially encompasses the outer perimeter of the adapter (10) and flexibly maintains the adapter (10) at a first specific orientation, but with reorientation capability, relative to the transmitter and/or receiver device (3).
Abstract:
A connector (7) for joining light transmitting fiber cables (9) to a transmitter and/or receiver device (3) comprises a plug half connector (6) and a yoke half connector (5). The plug half connector (6) comprises a plug (8) having axial extending bore (35) for receiving an optical fiber, a transceiver adapter (10) adapted to axially receive the plug (8) and extending axially for aligning the plug (8) relative to the transmitter and/or receiver device (3). Further the transceiver adapter (10) has a forward mating face (27). A pin (13) is beveled at its end (47) and is fixed to the forward mating face (27) of the tranceiver adapter (10) and extends forward of the plug half connector (6). The yoke half connector (5) is attached to and is integral with the transmitter and/or receiver device (3) and has an aperture (19) therein beveled (20) to receive the pin (13) to be guided into the aperture (19) by the beveling (20).