摘要:
A method of manufacturing a wire grid device is provided. The method includes: forming SAM (self assembly monomer) nano patterns on a substrate; and forming a wire grid between neighboring SAM nano patterns on the substrate on which the SAM nano patterns are formed by using an electroless plating technique or forming the wire grid on the SAM nano patterns on the SAM nano patterns by using the SAM nano patterns as a seed layer by using the electroless plating technique.
摘要:
The present invention relates to a direct methanol fuel cell having reduced methanol crossover. The fuel cell includes a layer of material for controlling the diffusion rate of fuel.
摘要:
The present invention relates to a direct methanol fuel cell having reduced methanol crossover, which comprises a layer of material for controlling the diffusion rate of fuel. More particularly, it relates to a direct methanol fuel cell in which the material for controlling the diffusion rate of fuel is interposed between an anode and a fuel reservoir or positioned within the fuel reservoir, and thus, the diffusion rate of methanol is reduced even when using high concentration methanol fuel, such that the injected methanol is completely reacted in a catalyst layer so as to fundamentally reduce unreacted methanol, thereby suppressing the methanol crossover phenomenon and exhibiting high power density. In the inventive direct methanol fuel cell, the diffusion rate of fuel is controlled using the fuel diffusion rate-controlling material so as to suppress the methanol crossover phenomenon, thereby increasing energy density and output density. Also, since a high methanol concentration of aqueous methanol fuel is used in the inventive fuel cell, the fuel cell can be used for a long period of time even with a small amount of fuel, and the volume of the fuel reservoir can be reduced, thus making it easy to miniaturize the fuel cell. According to the invention, the performance of all kinds of direct methanol fuel cells can be improved and the fuel cells can be used as electric power sources for small-sized portable electronic products, such as portable phones, PDAs, and notebook computers.
摘要:
The invention relates to a reforming apparatus made of LTCC and a manufacturing method therefor. The reforming apparatus includes an upper cover made of ceramic material, having a fuel inlet at one side thereof, and an evaporator made of ceramic layers formed integrally with the upper cover, having a flow path to gasify fuel introduced through the upper cover. In the reforming apparatus, a reformer made of ceramic layers is formed at one side of the evaporator, having a catalyst in a flow path thereof to reform fuel gas entering from the evaporator into hydrogen. A CO remover made of ceramic layers is formed integrally with the reformer, having a catalyst to remove CO from reformed gas entering from the reformer. A lower cover is formed integrally at one side of the CO remover, having a reformed gas outlet to emit the reformed gas to the outside.