ADJUSTMENT OF DATA COLLECTION RATE BASED ON ANOMALY DETECTION
    3.
    发明申请
    ADJUSTMENT OF DATA COLLECTION RATE BASED ON ANOMALY DETECTION 有权
    基于异常检测的数据采集率的调整

    公开(公告)号:US20090089558A1

    公开(公告)日:2009-04-02

    申请号:US11862983

    申请日:2007-09-27

    IPC分类号: G06F9/38

    CPC分类号: G05B21/02 Y02P90/18

    摘要: Systems and methods that vary multiple data sampling rates, to collect sets of data with different levels of granularity for an industrial system. The data for such industrial system includes sets of data from the “internal” data stream(s) (e.g., history data collected from an industrial unit) and sets of data from an “external” (e.g., traffic data on network services) data stream(s), based in part on the criticality/importance criteria assigned to each collection stage. Each set of data can be assigned its own unique data collection rate. For example, a higher sample rate can be employed when collecting data from the network during an operation stage that is deemed more critical (e.g., dynamic attribution of predetermined importance factors) than the rest of the operation.

    摘要翻译: 改变多种数据采样率的系统和方法,以便为工业系统收集不同粒度级别的数据集。 这种工业系统的数据包括来自“内部”数据流(例如,从工业单元收集的历史数据)和来自“外部”(例如,网络服务的业务数据)数据的数据集的数据集 流部分地基于分配给每个收集阶段的关键性/重要性标准。 每组数据可以分配自己独特的数据采集率。 例如,当在被认为比其余操作更为关键(例如,预定重要因素的动态归因)的操作阶段从网络收集数据时,可以采用更高的采样率。

    TARGETED RESOURCE ALLOCATION
    4.
    发明申请
    TARGETED RESOURCE ALLOCATION 审中-公开
    目标资源分配

    公开(公告)号:US20090089325A1

    公开(公告)日:2009-04-02

    申请号:US11863468

    申请日:2007-09-28

    IPC分类号: G06F17/30 G06F9/50

    摘要: Systems and methods that manage resources and distribution thereof within an industrial system. Such an automated and dynamic allocation service can allocate resources from pools of resources available to the industrial system, and hence supply an efficient operation (e.g., adding/subtracting resources dynamically based on usage). A plurality of allocation rules and/or algorithms for resource types can be predetermined, and/or dynamically trained by the allocation service. The data employed for the industrial system includes sets of data from the “internal” data stream(s) (e.g., history data collected from an industrial unit) and sets of data from an “external” (e.g., traffic data on network services) data stream(s), based in part on the criticality/importance criteria assigned to each collection stage.

    摘要翻译: 在工业系统内管理资源和分配的系统和方法。 这样的自动化和动态分配服务可以从可用于工业系统的资源池分配资源,并且因此提供有效的操作(例如,基于使用动态地添加/减少资源)。 用于资源类型的多个分配规则和/或算法可以被预先确定,和/或由分配服务动态训练。 用于工业系统的数据包括从“内部”数据流(例如,从工业单元收集的历史数据)和来自“外部”(例如,网络服务的业务数据)的数据集的数据集, 数据流部分地基于分配给每个收集阶段的关键性/重要性标准。