摘要:
One of the major hurdles of cellular therapies for the treatment of liver failure is the low availability of functional human hepatocytes. Although embryonic stem (ES) cells represent a potential cell source for therapy, current methods for differentiation result in mixed cell populations or low yields of the cells of interest. The present invention provides for a rapid, direct differentiation method that yields a homogeneous population of endoderm-like cells with 95% purity. In one embodiment, mouse ES cells cultured on top of collagen-sandwiched hepatocytes differentiate and proliferate into a uniform and homogeneous cell population of endoderm-like cells. The endoderm-like cell population was positive for Foxa2, Sox17 and AFP, and could further differentiate into hepatocyte-like cells that demonstrate hepatic morphology, functionality, and gene and protein expression. Incorporating the hepatocyte-like cells into a bioartificial liver device to treat fulminant hepatic failure improved animal survival, thereby underscoring the therapeutic potential of these cells.
摘要:
The present invention relates to a vascularized three dimensional construct for thick tissue, a process for making the construct and to the use of the construct in tissue regeneration and repair and in drug development. The three-dimensional (3-D) tissue technology is used to generate vascularized, biomimetic tissue models in vitro utilizing a biodegradable nanofiber scaffold. The culture system allows the maintenance of long-term survival and function of liver and heart cells. The system utilizes a novel approach to generate structures that mimic in vivo tissue architecture. The system provides a microenvironment for forming 3-D microvascular networks within the nanofiber scaffolds.