Abstract:
The present invention discloses a fuel-cell-based cogeneration system with radio frequency identification (RFID) sensors. The fuel-cell-based cogeneration system with RFID sensors includes the fuel-cell-based cogeneration system and an RFID data processing system. The RFID data processing system captures data of the temperature and flow rate from the RFID sensors, while the system data are in turn converted into RFID signals. The RFID data processing system transmits a control signal generated from the RFID signal to control the operation of the fuel-cell-based cogeneration system. Since the RFID transmission technology, the sensor error caused by wires is consequently reduced. Furthermore, overall sensitivity and accuracy of the RFID sensors are increased, which leads to an accompanying increase in the stability of the operating system.
Abstract:
A charge-controlling system and a method therefor are applicable to a backup power system having a fuel-cell-based power supply and a battery. The charge-controlling system includes a bidirectional converter, a feedback circuit, a voltage controller, a PWM generator, a switch unit and an over-charging protection circuit. The feedback circuit generates a feedback signal corresponding to an output voltage of the bidirectional converter. The voltage controller generates a control voltage according to the feedback signal and a constant voltage, such that the PWM generator generates a PWM signal based on the control voltage. The over-charging protection circuit controls operation of the switch unit according to the feedback signal and a saturation voltage of the battery. When the switch unit electrically connects the bidirectional converter and the PWM generator, the bidirectional converter charges the battery with the power generated by the fuel-cell-based power supply according to the PWM signal.
Abstract:
An analysis method for a regional image is disclosed for an image datum from a C-arm device. The analysis method includes: providing an indication module, reading the image datum, selecting a plurality of ROIs (Regions of Interest), calculating an average brightness of each of the ROIs, searching every of the steel ball image data, comparing each of the steel ball image data and analyzing each of the steel ball image data. By individually analyzing the regional image datum, the brighter or darker image signal can be excluded so that it can improve precision during searching the steel ball image data. Moreover, it is also more effective for comparing an image profile of the steel ball image datum with a real profile of the steel ball of the indication module. Thus, the steel ball image can be readily defined by its correspondence with the steel ball of the indication module.
Abstract:
A charge-controlling system and a method therefor are applicable to a backup power system having a fuel-cell-based power supply and a battery. The charge-controlling system includes a bidirectional converter, a feedback circuit, a voltage controller, a PWM generator, a switch unit and an over-charging protection circuit. The feedback circuit generates a feedback signal corresponding to an output voltage of the bidirectional converter. The voltage controller generates a control voltage according to the feedback signal and a constant voltage, such that the PWM generator generates a PWM signal based on the control voltage. The over-charging protection circuit controls operation of the switch unit according to the feedback signal and a saturation voltage of the battery. When the switch unit electrically connects the bidirectional converter and the PWM generator, the bidirectional converter charges the battery with the power generated by the fuel-cell-based power supply according to the PWM signal.
Abstract:
A system of a plurality of series-connected converter devices for a fuel cell apparatus and a method for controlling the system are provided. The system includes a fuel cell apparatus controller, the plurality of converter devices, a series connection unit, a Mux control unit, a power control unit, and a master controller. The output ends of the plurality of converter devices are connected in series by the series connection unit. The master controller reads signals from the power control unit and the Mux control unit and determines accordingly which converter devices need to be turned on to meet the requirement of a load. The method includes the steps of estimating a load, determining the number of the converter devices to be turned on, calculating an output power, discharging, and charging. Thus, the plurality of converter devices is controlled to output the required power of the load.
Abstract:
A heat-driven thermoelectric generator device is provided. The thermoelectric generator device includes a heat-driven cooling module and a thermoelectric module. The heat-driven cooling module is used to convert heat energy received from outside into cool energy. The thermoelectric module can generate electric power by the temperature difference between the heat energy received from outside and the cool energy generated by the heat-driven cooling module. According to the implementation of the present invention, the thermoelectric generator device can use a natural or artificial heat source as the heat energy to achieve the effect of generating electric power.
Abstract:
The present invention discloses a power conversion circuit. A control module controls a pulse width modulation regulator to regulate a duty cycle of a DC-DC converter according to the direct current link voltage of the DC-DC converter and the output current and voltage of a renewable power supply. The control module also controls the pulse width modulation regulator to regulate a duty cycle of a DC-AC inverter according to the direct current link voltage of the DC-DC converter, output voltage of a utility power supply, and the output current and voltage of the renewable power supply.
Abstract:
The present invention discloses an adsorption type refrigerator that automatically determines the switchover point. The adsorption type refrigerator includes a first vacuum chamber, a second vacuum chamber, a third vacuum chamber and a waterway structure. The waterway structure is connected to a first adsorption bed in the first vacuum chamber and a second adsorption bed in the second vacuum chamber. The waterway structure simultaneously conveys hot water into the first adsorption bed and cold water into the second adsorption bed, or simultaneously conveys cold water into the first adsorption bed and hot water into the second adsorption bed so as to allow the first and the second adsorption beds to conduct adsorption and desorption alternatively. This alternation creates pressure variation in the three vacuum chambers, which is then utilized to automatically determine the switchover point at which the refrigerator can provide and maintain a cold, stable environment.
Abstract:
A voltage regulator for a fuel cell and a method therefor are disclosed. Inputs of converters are connected to the fuel cell in parallel and outputs of the converters are connected between a positive terminal and a negative terminal of a load in series. The output of the fuel cell is converted by the converters and combined to output as an output voltage, which is provided to the load as a working voltage of the load. A control circuit in the voltage regulator receives a feedback signal related to the output voltage to feedback control the converters, such that each converter outputs the same constant voltage.
Abstract:
A grid-connected power conversion circuitry and a power conversion method thereof are disclosed. A DC-DC converter converts a renewable energy into a stable and constant DC power. A DC-AC inverter inverts the DC power into an AC power. The duty cycle of the DC-DC converter is adjusted based on a feedback signal related to the DC power, thereby stabilizing the output of the DC-DC converter. The duty cycle of the DC-AC inverter is adjusted based on a feedback signal related to the AC power as well as the phase angle of grid power that is in turn detected by a phase angle processor. Consequently, the AC power can be synchronized with the grid power in frequency. Therefore, the grid system provides auxiliary power when the renewable energy is insufficient, and the AC power output by the DC-AC inverter is synchronized with the grid power in frequency.