Abstract:
A positioning system and method are provided to use multiple RFID readers to position a target object with an active RFID tag equipped thereon. The system and method defines a geometric center of the locations of the RFID readers as a first coordinate. When the RFID readers continuously receive RF signals of the active RFID tag, a corresponding signal intensity of each of the RF signals is calculated and compared to obtain an approaching vector corresponding to the location of the RFID reader with the greatest signal intensity of the RF signal. A positioned location of the target object is then approached from the first coordinate to a second coordinate according to the approaching vector. The first coordinate and the positioned location of the target object will be reset as the second coordinate. The reset first coordinate is output as the latest positioned location of the target object.
Abstract:
A system for sharing GPS protocol data is described. In the system, raw GPS protocol data from a satellite is obtained by a GPS receiver. A GPS protocol data server is connected to the GPS receiver through a physical serial port, so as to obtain the GPS protocol data. A service application program is execute on the GPS protocol data server, and provides a service of resolving the GPS protocol data or converting the format thereof through a TCP/IP based multi-thread communication procedure. A virtual serial port driver is used to generate a plurality of virtual serial ports, and each virtual serial port communicates with the service application program through the TCP/IP protocol. Therefore, application devices or application programs respectively communicates with the service application program through the virtual serial ports, thereby obtaining the service of parsing the GPS protocol data provided by the service application program.
Abstract:
A mobile RFID (Radio Frequency Identification) system and method are provided to monitor multiple control zones of the system simultaneously through a mobile outpost monitor. The control zones included in the system are connected with each other through a data exchange interface. Each of the control zones includes a link interface connecting with a gateway of at least one RFID tracking module. The gateway connects with at least one RFID reader and a signal transmitter to receive tag information of RFID tags within the control zone, and transmits the tag information through the signal transmitter. When the mobile outpost monitor moves from one control zone to another, the mobile outpost monitor may switch to link with the signal transmitter of the gateway in the current control zone. Through the data exchange interface, the mobile outpost monitor is able to obtain the monitoring information of another control zones.
Abstract:
A radio frequency identification (RFID) reader includes a plurality of signal antennas, which are respectively arranged in directions that are not parallel to and co-linear with each other. Each of the signal antennas has a predetermined antenna field pattern and operates with a predetermined carrier wave frequency. A wireless receiver is connected to the signal antennas. A signal conversion unit is connected to the wireless receiver. A frequency generator generates the carrier wave frequency to the signal antenna. A microprocessor is connected to the signal conversion unit and the frequency generator.
Abstract:
A radio frequency identification (RFID) reader includes a plurality of signal antennas, which are respectively arranged in directions that are not parallel to and co-linear with each other. Each of the signal antennas has a predetermined antenna field pattern and operates with a predetermined carrier wave frequency. A wireless receiver is connected to the signal antennas. A signal conversion unit is connected to the wireless receiver. A frequency generator generates the carrier wave frequency to the signal antenna. A microprocessor is connected to the signal conversion unit and the frequency generator.
Abstract:
A positioning system and method are provided to use multiple RFID readers to position a target object with an active RFID tag equipped thereon. The system and method defines a geometric center of the locations of the RFID readers as a first coordinate. When the RFID readers continuously receive RF signals of the active RFID tag, a corresponding signal intensity of each of the RF signals is calculated and compared to obtain an approaching vector corresponding to the location of the RFID reader with the greatest signal intensity of the RF signal. A positioned location of the target object is then approached from the first coordinate to a second coordinate according to the approaching vector. The first coordinate and the positioned location of the target object will be reset as the second coordinate. The reset first coordinate is output as the latest positioned location of the target object.
Abstract:
A handheld electronic device and mobile RFID (Radio Frequency Identification) reader equipped thereon allow a user to move to wherever necessary and sense RFID tag data of a target object. The mobile RFID reader includes a microprocessor, a memory unit connected to the microprocessor, a reader positioning unit, a RFID transceiver, a temporary data storage and a network interface. The reader positioning unit positions the location of the RFID reader to obtain reader location information of the RFID reader, and then the RFID transceiver receives a tag signal with tag ID (Identification) data from RFID tag. The reader location information and the tag ID data of the RFID tag are able to be stored optionally in the temporary data storage, and will be uploaded to a backend network sever whenever the RFID reader is connected to the backend network sever through its network interface.
Abstract:
A mobile RFID (Radio Frequency Identification) system and method are provided to monitor multiple control zones of the system simultaneously through a mobile outpost monitor. The control zones included in the system are connected with each other through a data exchange interface. Each of the control zones includes a link interface connecting with a gateway of at least one RFID tracking module. The gateway connects with at least one RFID reader and a signal transmitter to receive tag information of RFID tags within the control zone, and transmits the tag information through the signal transmitter. When the mobile outpost monitor moves from one control zone to another, the mobile outpost monitor may switch to link with the signal transmitter of the gateway in the current control zone. Through the data exchange interface, the mobile outpost monitor is able to obtain the monitoring information of another control zones.
Abstract:
A system and method is provided to track positions of a portable electronic device. Different communication modules capable of retrieving position signals are enabled selectively according to the status/type of position signals of the portable electronic device. All of the different communication modules are enabled when the portable electronic device locates around a boundary between different regions that require different communication modules to obtain geography information. Therefore, by means of seamless transferring operation between different communication modules, a remote manager may be able to continuously monitor the positions of the portable electronic device.