Abstract:
A multi-domain vertical alignment liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, and at least one projection. The second substrate is opposite to the first substrate. The liquid crystal layer is interposed between the first and second substrates. The projection is formed in the first substrate. In displaying a dark state, a lower surface of the projection is on the same plane as a lower surface of the first substrate; and in displaying a bright state, the projection bulges outward to have the lower surface of the projection projecting outward beyond the lower surface of the first substrate. When the multi-domain vertical alignment liquid crystal display panel displays a dark state, the projection does not undergo deformation so that the projection does not affect the directions of the liquid crystal molecules contained in the liquid crystal layer thereby eliminating occurrence of light leakage.
Abstract:
The present invention provides a polymer stabilization alignment liquid crystal display panel having a plurality of pixel regions. Each pixel region includes a main region and a sub region, and a first pixel electrode and a second pixel electrode correspond to the main region and the sub region respectively. Each first pixel electrode is separated from the adjacent data line and thereby forming a gap therebetween. Each second pixel electrode partially overlaps the adjacent data line. In addition, each second pixel electrode includes a plurality of branches, and at least one edge of the branches may be parallel to the data lines. Accordingly, the present invention not only can increase the aperture ratio, but also well control the liquid crystal molecules located near the data lines. Therefore, the display quality of the liquid crystal display panel can be improved.
Abstract:
A multi-domain vertical alignment liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, and at least one projection. The second substrate is opposite to the first substrate. The liquid crystal layer is interposed between the first and second substrates. The projection is formed in the first substrate. In displaying a dark state, a lower surface of the projection is on the same plane as a lower surface of the first substrate; and in displaying a bright state, the projection bulges outward to have the lower surface of the projection projecting outward beyond the lower surface of the first substrate. When the multi-domain vertical alignment liquid crystal display panel displays a dark state, the projection does not undergo deformation so that the projection does not affect the directions of the liquid crystal molecules contained in the liquid crystal layer thereby eliminating occurrence of light leakage.
Abstract:
A display panel including a first substrate, scan lines, data lines, sub-pixel units, a light-shielding layer, a second substrate, and a display medium is provided. Each of the sub-pixel units includes a main display unit and a sub-display unit. The main display unit includes a first switch and a first pixel electrode, wherein the first pixel electrode and the data lines adjacent thereto are separated from each other with a gap (G1). The sub-display unit includes a second switch and a second pixel electrode, wherein the second and the data lines adjacent thereto are overlapped with a first overlapping width (W1). The light-shielding layer is disposed between two adjacent first pixel electrodes such that the light-shielding layer and one of the first pixel electrodes adjacent thereto are overlapped with a second overlapping width (W2). Additionally, the display medium is display between the first substrate and the second substrate.
Abstract:
A thin film transistor (TFT) array substrate includes a stack structure disposed to raise an extended electrode of a drain electrode of a thin film transistor. Therefore, a contact hole does need to be very deep to expose the extended electrode of the drain electrode.
Abstract:
An active device array substrate including a substrate, an active device array, a black matrix, a color filter, at least a pad, and at least a contact window is provided. The substrate has a display region and a periphery circuit region. The pad is disposed in the display region or the periphery circuit region and is constituted by at least one of a first conductive layer and a second conductive layer. The contact window is disposed on the pad, through which a third conductive layer is connected to the pad. The contact window is surrounded by at least two different types of light-shielding patterns, wherein each light-shielding pattern surrounds only a part of the periphery of the contact window. The light-shielding patterns are selected form at least two of the black matrix, the color filter, the first conductive layer, and the second conductive layer.
Abstract:
A microfluidic device with microstructure includes a channel for accommodating an electrolytic solution therein and at least one microstructure formed in the channel. When an alternating-current signal is input to the microfluidic device so that a surface of the microstructure is polarized by a generated electric field, ions having polarity reverse to that of an electrolytic solution will migrate to the surface of the microstructure to form a field-induced electrical double layer to result in electro-osmotic flows at the corners at two sides of the microstructure, which causes formation of relatively fierce circular vortices in the solution. A sensing system and a sensing method using the microfluidic device with microstructure are also disclosed.
Abstract:
An optical compensated bend (OCB) mode liquid crystal display (LCD) includes a pixel electrode, a color filter, a common electrode and a liquid crystal layer. The pixel electrode is formed on the first substrate of the OCB mode LCD. The color filter is formed on the second substrate of the OCB mode LCD. The common electrode is formed on the color filter. The liquid crystal layer is sandwiched between the first substrate and the second substrate. A step structure is formed on the second structure, so that the liquid crystal molecules in the liquid crystal layer are twisted into the bend state from the splay state uniformly and quickly.
Abstract:
The present invention discloses a stereoscopic display system, which includes a phase retarder, a display panel, a detector unit, and a processing unit. The phase retarder has a plurality of first strip shapes and a plurality of second strip shapes. The first strip shapes and the second strip shapes are alternately arranged. The display panel has a plurality of pixels. The pixels are arranged into a plurality of pixel rows corresponding to the first strip shapes and the second strip shapes. The detector unit utilized to detect a position of an observer's eyes relative to the display panel. The processing unit is electrically coupled to the display panel and the detector unit, and is utilized to adjust a position of the images displayed on the plurality of pixel rows, thereby reducing a crosstalk phenomenon.
Abstract:
The present invention discloses a stereoscopic display, which includes a phase retarder a display panel, and board-like structures. The phase retarder has a plurality of first strip shapes and a plurality of second strip shapes. The first strip shapes and the second strip shapes are alternately arranged. The display panel has a plurality of pixels. The pixels are arranged into a plurality of pixel rows corresponding to the first strip shapes and the second strip shapes. The board-like structures are disposed in the liquid-crystal layer of the display panel. The pixel rows are respectively separated from each other by the board-like structures, thereby reducing a crosstalk phenomenon.