Abstract:
A lighting device is provided, having at least one light emitting diode module, a power factor correction circuit, a non-regulated isolation DC to DC converter and at least one regulated non-isolation DC to DC converter. The power factor correction circuit performs a power factor correction on an AC power source and outputs a corrected DC voltage. The non-regulated isolation DC to DC converter generates an output voltage in a predetermined voltage range according to the corrected DC voltage, wherein the non-regulated isolation DC to DC converter is an open-loop controlled buck DC to DC converter. The regulated non-isolation DC to DC converter generates a fixed current or a fixed voltage according to the output voltage output from the non-regulated isolation DC to DC converter, thereby driving the light emitting diode module.
Abstract:
A current-preheat electronic ballast includes an AC-to-DC converter, a controlling unit, an auxiliary voltage generator, and an inverter. The inverter is connected with the DC bus for converting a high DC voltage into an AC output voltage and generating a resonant current and a lamp filament current to a lamp group. The inverter includes a resonant circuit and a resonant capacitor adjusting circuit. The resonant circuit provides electric energy required to preheat the lamp group. The resonant capacitor adjusting circuit judges whether the inverter is enabled according to the detecting element. After the inverter has been enabled for a delayed time, two high-voltage switching terminals of the resonant capacitor adjusting circuit are correspondingly conducted or shut off, so that an equivalent resonant capacitance value of the resonant circuit is changed and a voltage drop across two ends of a lamp filament of the lamp group is changed.
Abstract:
The configurations of an end of lamp life protection circuit for a ballast and a method thereof are provided in the present invention. The proposed circuit includes a voltage-dividing circuit receiving an input voltage and outputting a first and a second divided voltages and a switch apparatus raising the first divided voltage when the second divided voltage is less than a first pre-determined threshold value and turning off the ballast when the first divided voltage is higher than a second pre-determined threshold value.
Abstract:
A ballast comprising a first input terminal, a second input terminal, a switch circuit, and a plurality of lamp sets is provided. The switch circuit comprises a first switch and a second switch connected with the first one. The switches are connected with the first and second input terminals respectively. The lamp sets are connected in parallel with each other and have an arrangement sequence. Each of the lamp sets is coupled to the first and second switches and comprises a first lamp having a first filament. The filaments are connected in series according to the arrangement order so that at least one junction is formed in the at least one connection point. The first one of the first filaments is coupled to the first switch. The last one of the first filaments is coupled to the second switch. Thereby, the ballast can be implemented by less internal connection terminals and leads.
Abstract:
A lighting device is provided, having at least one light emitting diode module, a power factor correction circuit, a non-regulated isolation DC to DC converter and at least one regulated non-isolation DC to DC converter. The power factor correction circuit performs a power factor correction on an AC power source and outputs a corrected DC voltage. The non-regulated isolation DC to DC converter generates an output voltage in a predetermined voltage range according to the corrected DC voltage, wherein the non-regulated isolation DC to DC converter is an open-loop controlled buck DC to DC converter. The regulated non-isolation DC to DC converter generates a fixed current or a fixed voltage according to the output voltage output from the non-regulated isolation DC to DC converter, thereby driving the light emitting diode module.
Abstract:
An electronic ballast includes an inductor, an output transformer, at least two switching elements, a control circuit, a clamping circuit, and at least two return circuits. The inductor is electrically coupled to a DC power supply. The control circuit is electrically connected to the inductor, the output transformer and the switching elements for controlling on/off statuses of the switching elements. The clamping circuit is electrically connected to the inductor, and limits a node voltage among the inductor, the control circuit, and the clamping circuit below a threshold value and generates an output current on condition that the node voltage is larger than the threshold value. Each of the return circuits is electrically connected to the clamping circuit and coupled to both terminals of one of the switching elements for transmitting the output current to the output transformer, thereby permitting a reverse voltage of the switching elements within a maximum allowable range of the switching elements.
Abstract:
The present invention discloses a frequency-modulated dimming control system of a discharge lamp. The frequency-modulated dimming control system of a discharge lamp includes including a voltage regulator having a variable output voltage for converting an input voltage into a bus voltage, wherein a level of the bus voltage is a predetermined ratio of the input voltage, for example 10% of the input voltage, and a ballast circuit for driving the discharge lamp by detecting a variation of the bus voltage and then providing a current to the discharge lamp in response to a frequency modulation of the ballast circuit and the variation of the bus voltage so as to control a light intensity of the discharge lamp.
Abstract:
A printing press includes two opposite mounting walls formed with aligned horizontally extending openings in which two sliding seats are mounted slidably and respectively, a printing roller extending horizontally between the mounting walls and having a longitudinal axis and two opposite ends mounted rotatably and respectively to the sliding seats, a printing plate unit mounted securely on the printing roller, a first retaining assembly provided on one of the mounting walls for retaining releasably a first one of the sliding seats in a desired position in the respective opening, and a second retaining assembly provided on the other one of the mounting walls for retaining releasably a second one of the sliding seats in a desired position in the respective opening. The retaining assemblies are actuated simultaneously to cause longitudinal sliding movement of the sliding seats within the openings so as to result in movement of the longitudinal axis of the roller relative to the mounting walls in a direction parallel to the mounting walls. Actuation of the second retaining assembly without actuating the first retaining assembly causes longitudinal sliding movement of the second one of the sliding seats within the respective opening so as to vary an angle formed between the longitudinal axis of the printing roller and one of the mounting walls.
Abstract:
The present invention provides an illumination device, an illumination system, and a lamp. The illumination system includes the illumination device and a light modulation module. The illumination device includes a light emitting diode (LED) array, an alternating current (AC) current source, and an output power control module. The AC current source is electrically coupled to the LED array. The output power control module is electrically coupled to the LED array and the AC current source. The LED array, the AC current source, and the output power control module together form a closed-loop control loop. The light modulation module is electrically coupled to the closed-loop control loop for modulating illumination brightness of the LED.
Abstract:
An electronic ballast for a light emitting load is provided, and includes a transformer module, a resonance module, a high-frequency push-pull inverter and a driving controller module. The high-frequency push-pull inverter includes a first switch component and a second switch component. The driving controller module is used for generating and providing an asymmetric driving waveform to the first switch component and the second switch component. The asymmetric driving waveform includes a first discharging waveform portion for discharging and turning off the first switch component, and also a second discharging waveform portion for discharging and turning off the second switch component. The first and second discharging waveform portions are different in current amplitudes and time spans.