Abstract:
An energy absorbing knee bolster for use in an interior of a vehicle is disclosed. An energy absorbing support structure is configured to support an instrument panel within a vehicle. The energy absorbing structure has a deployable tubular mechanism for absorbing occupant impact energy and an impact plate coupled to the tubular mechanism for absorbing occupant energy. An energy absorbing locking mechanism is disposed between the impact plate and the support structure. The locking mechanism is configured to encourage the collapse of the tubular means for absorbing energy in a telescopic fashion.
Abstract:
A volume-filling mechanical structure for modifying a crash or impact comprising a honeycomb celled material expandable from a compact state to a expanded state and methods for operating the same.
Abstract:
A four-point seat belt system is provided which includes a seat mountable within the vehicle, the seat has upper and lower medial locations. A first seat belt is disclosed having a first end coupled to the lower medial location and a second end coupled to the upper medial location. The seat belt further has a first tongue disposed between the first and second ends. A second seat belt is provided which has a first end coupled to the lower medial location and a second end having a second tongue. A first track located on the vehicle's door is provided which has a first seat belt buckle and a first drive mechanism. A second track is provided on the vehicle's door frame which has a second seat belt buckle. The first drive mechanism is configured to move at least one of the first seat belt buckle or the second seat belt buckle from a first location to a second location.
Abstract:
A method of operating a volume-filling structure, comprising sensing an impact event and expanding the volume-filling structure from a non-expanded state to an expanded state upon the sensed impact event. The volume-filling structure comprises an open celled material, a first end cap connected to one end of the open celled material and a second end cap connected to a second end of the open celled material. The volume-filling structure further includes an activation mechanism regulating expansion of the open celled material from the non-expanded state to expanded state in response to an activation signal, and the activation mechanism includes an actuator interfaced with the end caps. Embodiments may include triggering a pneumatic device to force the second end cap from the first end cap. Additionally, embodiments may include triggering a mechanical event to force the second end cap from the first end cap.
Abstract:
A volume-filling mechanical structure for modifying a crash or impact comprising a honeycomb celled material expandable from a compact state to a expanded state and methods for operating the same.
Abstract:
A pre-impact mode of a bumper system is provided by extending a bumper member outwardly and extending a stiffener member downwardly. Both the bumper member and the stiffener member are separately adapted to engage an object. The bumper system includes a bumper member movable between a retracted position and a laterally extended position. A stiffener member is movable between a retracted position and a downwardly extended position. An actuator mechanism is adapted to move the bumper member between the retracted and laterally extended positions and to cause the stiffener member to move between the retracted and downwardly extended positions as a result of moving the bumper member.
Abstract:
A method of operating a volume-filling structure, comprising sensing an impact event and expanding the volume-filling structure from a non-expanded state to an expanded state upon the sensed impact event. The volume-filling structure comprises an open celled material, a first end cap connected to one end of the open celled material and a second end cap connected to a second end of the open celled material. The volume-filling structure further includes an activation mechanism regulating expansion of the open celled material from the non-expanded state to expanded state in response to an activation signal, and the activation mechanism includes an actuator interfaced with the end caps. Embodiments may include triggering a pneumatic device to force the second end cap from the first end cap. Additionally, embodiments may include triggering a mechanical event to force the second end cap from the first end cap.
Abstract:
An actuator is adapted to selectively extend and retract a bumper member, the actuator is mounted at least partially within a tubular frame rail member of the motor vehicle. The main frame rail member may be of a standard length or of a shortened length. By mounting the actuator inside the tubular frame rail member, the bending stiffness is more effectively impacted by the outer tube of the actuator. An additional tubular frame rail member is optionally attached to the main tubular frame rail member. The actuator is mounted at least partially within the tubular frame rail member and at least partially within the additional tubular frame rail member. The wall thickness and cross-sectional shape of the additional tubular frame rail members may be adjusted to obtain a desired bending stiffness including the effect of the outer tube of the actuator.