Abstract:
A liquid-cooled internal combustion engine has cylinder banks that tilt toward one another, to for a V engine. A coolant, which is fed to the exhaust gas-sided cooling jackets in the cylinder banks, is fed over cylinder heads with cross flow to cooling jackets. The coolant drains over break-throughs in the cylinder bank boundaries into an outflow line in the V-space. The outflow line and the inflow line are connected to a coolant pump. The coolant is fed from the inflow line over distribution channels at a housing end to the exhaust gas-sided cooling jackets.
Abstract:
A heat exchanger for liquid heat exchange media for alternate valve-controlled heating or cooling of one of the liquids, to achieve high-quality regulation of a valve device and small temperature differentials between the inlet and outlet of the heat exchange means that serves for heating and cooling. A temperature sensor is provided in the outlet of the heat exchanger for the first liquid or heat exchange means that serves for heating and cooling. The sensor controls and/or regulates separate valves located in a hot inlet and a cold inlet of the first liquid or of the first heat exchange means in the valve device.
Abstract:
The invention concerns a device and method for cooling and preheating, especially of transmission fluid, of an internal combustion engine, with an equalization tank, with at least one radiator, which can be connected by means of an engine thermostat when a predetermined temperature is reached in the cooling loop, and with a water/oil heat exchanger. It is prescribed according to the invention that the forward stream (1) of a single water/oil heat exchanger (5) be branched off in the heating phase by means of a valve unit (3) essentially from the main cooling loop (12) of the internal combustion engine (17) and that its forward stream (1) in the cooling phase be taken by means of the same valve unit (3) essentially in the coolant side stream (13) from the low-temperature region (14) of the radiator (4) or a separate low-temperature cooler (14a) connected in the side stream after radiator (4, 4a). The method proposes that the forward stream (1) of the water/oil heat exchanger (5) be taken in the heating phase essentially from the main coolant stream (12) not flowing through the radiator (4), that switching to cooling operation occur at a temperature lying somewhat below the switch point of the engine main thermostat (9) and the forward stream (1) of the water/oil heat exchanger (5) in cooling operation be branched off essentially from the low-temperature region (14) of radiator (4), or from a low-temperature cooler (14a) additionally connected in the side stream after radiator (4, 4a).
Abstract:
In order to control the temperature of the transmission oil of a motor vehicle driven by a liquid-cooled engine, a coolant/transmission oil heat exchanger is provided. The coolant stream supplied to the heat exchanger is miscible in a thermostatic valve from recooled and non-recooled coolant in order to achieve a desired temperature. Preferably the thermostatic valve is controlled by the temperature of the transmission oil, but it is also possible to have two expanding material elements as control pistons of the thermostatic valve, with one control piston being provided in the oil chamber of the thermostatic valve and the other control piston being provided in the coolant mixing chamber of the thermostatic valve. It is also possible, for purposes of precontrol, to electrically heat at least one of the control pistons.