Abstract:
A first article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions and a reflective coating that provides reflective diffraction within the article but is sufficiently thick to prevent diffraction outside the article. Alternatively, the reflective coating can be arranged to also provide reflective diffraction outside the article. A second article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions. Either (i) at least a portion of each ridge, or (ii) at least portion of each trench, comprises a material differing with respect to its refractive index or with respect to its optical transmissivity.
Abstract:
An article comprises a volume of material having at least one faceted or curved surface, and at least one diffraction grating on at least one surface of the article. The diffraction grating comprises a set of diffractive elements formed in a deformable layer attached to the surface of the article. A method comprises forming the set of diffractive elements by deformation of the deformable layer, and attaching the deformable layer to a surface of the article. The layer can be deformed to form the diffractive elements before or after it is attached to the surface of the article.
Abstract:
An optical apparatus comprises a set of diffractive elements on a substrate. They are arranged: (i) to receive an input signal propagating from an input port as a diffraction-guided optical beam, (ii) to diffract a portion of the received input signal as an output signal, (iii) to route the output signal to propagate to an output port as a diffraction-guided optical beam, and (iv) to exhibit a positional variation in diffractive amplitude, optical separation, or spatial phase over some portion of the set. The arrangement of the diffractive elements corresponds to an interference pattern derived from computed interference at a surface of the substrate between a simulated design input and output optical signals. Each diffractive element comprises at least one trench segment positioned along a path defined by a constant-phase contour of the interference pattern. Each trench segment is substantially rectangular or trapezoidal in transverse cross section.
Abstract:
An optical grating comprising a grating layer and two surface layers, the layers being arranged with the grating layer between the surface layers. The grating layer comprises a set of multiple, discrete, elongated first grating regions that comprise a first dielectric material and are arranged with intervening elongated second grating regions. The bulk refractive index of the dielectric material of the first grating regions is larger than the bulk refractive index of the second grating regions. The first surface layer comprises a first impedance matching layer, and the second surface layer comprises either (i) a second impedance matching layer or (ii) a reflective layer. Each said impedance matching layer is arranged to reduce reflection of an optical signal transmitted through the corresponding surface of the grating layer, relative to reflection of the optical signal in the absence of said impedance matching layer.
Abstract:
A spectral filter comprises a planar optical waveguide having at least one set of diffractive elements. The waveguide confines in one transverse dimension an optical signal propagating in two other dimensions therein. The waveguide supports multiple transverse modes. Each diffractive element set routes, between input and output ports, a diffracted portion of the optical signal propagating in the planar waveguide and diffracted by the diffractive elements. The diffracted portion of the optical signal reaches the output port as a superposition of multiple transverse modes. A multimode optical source may launch the optical signal into the planar waveguide, through the corresponding input optical port, as a superposition of multiple transverse modes. A multimode output waveguide may receive, through the output port, the diffracted portion of the optical signal. Multiple diffractive element sets may route corresponding diffracted portions of optical signal between one or more corresponding input and output ports.
Abstract:
A planar optical waveguide has a set of diffractive elements and confines propagating optical signals in at least one transverse spatial dimension. Each diffractive element set routes, between input and output ports, a corresponding diffracted portion of an input optical signal propagating in the planar optical waveguide that is diffracted by the diffractive element set. The input optical signal is successively incident on the diffractive elements. A desired level of birefringence for a chosen signal optical transverse mode is determined at least in part by i) selected areal density of diffractive elements, ii) selected diffractive element height and position along the confined transverse spatial dimension, iii) selected thicknesses and indices of materials comprising the diffractive elements, or iv) selected thicknesses and stress-optical coefficients of materials comprising the planar optical waveguide, and selected thermal expansion coefficient differentials among materials comprising the planar optical waveguide or comprising a waveguide substrate thereof.
Abstract:
An exemplary optical apparatus comprises: an optical element having multiple sets of diffractive elements; and a photodetector. The diffractive elements of each set are collectively arranged so as to comprise corresponding spectral and spatial transformation information for each set. At least two of the sets differ with respect to their corresponding spectral and spatial transformation information. The diffractive elements of each of the sets are collectively arranged so as to transform a portion of an input optical signal into a corresponding output optical signal according to the corresponding spectral and spatial transformation information. At least one photodetector is positioned for receiving at least one of the corresponding output optical signals.
Abstract:
A slab optical waveguide confines in one transverse dimension optical signals propagating in two dimensions therein, and has a set of diffractive elements collectively arranged so as to exhibit positional variation in amplitude, optical separation, or spatial phase. The diffractive elements are collectively arranged so as to apply a transfer function to an input optical signal to produce an output optical signal. The transfer function is determined at least in part by said positional variation in amplitude, optical separation, or spatial phase. The waveguide and diffractive elements are arranged so as to confine only one of the input and output optical signals to propagate in the waveguide so that the optical signal thus confined is successively incident on the diffractive elements, while the other optical signal propagates unconfined by the waveguide in a direction having a substantial component along the confined dimension of the waveguide.
Abstract:
An optical time delay apparatus comprises: a multi-wavelength optical source; a diffractive element set imparting a wavelength-dependent delay on signals routed from the source to a 1×N optical switch; and N diffractive element sets routing signals from the 1×N switch to an output port. The optical propagation delay between the source and the output port varies according to the operational state of the source and the 1×N switch. A photodetector may receive the time-delayed signal at the output port.
Abstract:
An optical apparatus comprises a planar optical waveguide having at least two sets of diffractive elements. The planar optical waveguide substantially confines in at least one transverse spatial dimension optical signals propagating therein. The two diffractive element sets define an optical resonator that supports at least one resonant optical cavity mode. An optical signal in one of the resonant optical cavity modes is successively incident on the diffractive elements of each of the diffractive element sets.